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in the period before, for a “relative risk ratio” of 6 (see Table 3). In other words, it now appears that 
suspicious deaths were six times more likely after the nurse joined the hospital staff than before. The p-
value, indicating the probability of this difference occurring by chance is about 0.0068 (about 1 chance in 
150), which sounds strongly incriminating for the nurse. But of course, the nurse is entirely innocent. The 
seemingly incriminating finding was generated by biased investigators who failed to take account of 
other factors that might have affected the death rate and interpreted the data in a manner that was 
inadvertently influenced by predictable human biases. An unbiased investigation would have shown a 
smaller (and therefore less incriminating) increase in deaths. 

Table 3 Number of “Suspicious Deaths” Before and After Suspect Joined the Hospital Staff (as 
Reported by a Biased Investigation) 

 Patients Deaths Deaths Deemed 
“Suspicious” in a Biased 

Investigation 

Deaths Deemed 
“Suspicious” in an Unbiased 

Investigation 

Before 1,000 100 5 10 

After 1,000 200 30 20 

Relative risk ratio   6 2 

p-value79   0.0068 0.5876 

 

Example 2 

Another approach that investigators may take is to compare the number of “suspicious deaths” when the 
nurse was or was not on duty. Our second example illustrates how statistics produced by such 
comparisons can be distorted by (a) failure to take account of other causal factors that may correlate 
with the duty periods; and (b) investigative bias in determining which deaths are suspicious. It also 
allows the time periods over which the data are collected to be unequal in length.  

Suppose that 16 patients die in circumstances assessed by investigators to be suspicious over a 15-day 
period on the ward in question, with 9 11 of those deaths reported during the 7-hour morning shifts and 
the remaining 7 5 during the afternoon and night shifts. The nurse under suspicion works 8 morning 
shifts, and 2 of the afternoon or night shifts. So the raw rate of suspicious deaths tends to be higher 
when the nurse is on duty than when not, simply by virtue of the nurse’s pattern of work. The first 
columns in Table 4 (under ‘Unbiased investigation’) tabulate these values. Compared to Example 1 it is 
now more difficult to interpret the data intuitively, but cross-classifying the deaths by shift and the nurse’s 
presence in this way suggests that the time of day is an important factor; an appropriate formal method 
of analysis is described in Section 5(c) below, and yields the p-values in the final line of the table. These 
show that allowing for the inherent differences between shifts transforms the strength of evidence 
against the nurse from statistically significant (p=0.017015) to very weak indeed (p=0.378301). 

  

 

79 p-values computed using (one-sided) Fisher’s exact test.  
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Table 4 Numbers of “suspicious deaths” when suspect was and was not on duty, under 
assumptions of both unbiased and biased investigations (see text)  

 Deaths attributed to nurse on duty 

Unbiased investigation Biased investigation 

 Shifts Ignoring 
morning 

effect 

Allowing for 
morning effect 

Ignoring 
morning 

effect 

Allowing for 
morning effect 

Nurse on duty, morning 8 108 7 1210 8 

Nurse on duty, other80 72 31 42 

Nurse off duty, morning 27 68 24 46 13 

Nurse off duty, other 28 4 3 

p-value81 for nurse effect 0.017015 0.378301 0.00070006 0.031027 

Finally, let us suppose that cognitive bias also influences the investigators’ assessments of whether each 
of the deaths was suspicious, in such a way that 2 additional deaths during the nurse’s shifts are now 
judged suspicious, one in the morning and one in the afternoon, while one fewer death was called 
suspicious in each of the counts where the nurse was not on duty. The final columns of Table 4 (under 
‘biased investigation’) show these data, and the corresponding p-values, show that this small bias (which 
might also have been caused by simple mis-recording in duty records) is enough to make the evidence 
now statistically significant (p=0.031027) even when we assume there is no difference between morning 
and other shifts in mean rates of death, whilst if we do not allow for such differences the evidence is very 
highly significant (p=0.00070006). 

All of the analyses here assume that there are no other causal effects, such as seasonal factors or 
administrative changes, that need to be taken into account. 

In Appendix 6, we describe analyses of the data in these two examples, and explain the logic and the 
calculations that lead to the p-values quoted above. 

 

 

 

80 i.e. afternoon, evening or night shift 
81 Using likelihood ratio test for equality of rates, with and without adjustment for morning effect. This is the chi-
squared test conventionally used in the analysis of deviance; see Appendix 6. 
 



 

45 

Appendix 6: Patterns of occurrence of adverse events 

Here we give some annotated examples of correct analyses of illustrative data on patterns of occurrence 
of adverse events. To simplify exposition we will write about unexpected deaths of patients in a section 
of a hospital, and take the “explanation” under consideration to be deliberate harm caused by a nurse. Of 
course, this exposition applies mutatis mutandis to many other scenarios, and any professional role, etc. 

We will assume that these events occur completely at random, but at a rate per unit of time (hour, shift, 
day, etc., as appropriate) that varies with time, and may be influenced by factors of the kind already 
discussed: seasonal and diurnal effects of disease, administrative changes, etc., and also, possibly, by 
wilful harm. We use the phrase “completely at random” in its proper mathematical sense, to mean that 
the occurrence of an event at a particular time has no direct influence on the time of any other event. (In 
other words, we consider only exogenous causes for the variation in rate of the adverse event, not 
endogenous ones). This rules out for example infections of a contagious disease, where there can be a 
direct causal link, but would cover heart attacks. The only other assumption we make is that when we 
consider two or more causal factors for the variation in rate, the effects of these are multiplicative: the 
percentage change in rate when one factor is present is the same whether or not other factors are also 
present. 

As an artificially simple example, consider a hospital ward which is staffed either by nurse A or by nurse 
B. Numbers of deaths when each of the nurses is in charge are counted, and summarised here: 

Table 5 Illustrative example: patient survival statistics under the care of two nurses 

 Nurse A Nurse B Total 

Died 15 9 24 

Survived 25 31 56 

Total 40 40 80 

Could the apparent discrepancy in rates of death be attributed to chance, “just a coincidence”? We 
suppose that all circumstances of the Nurse A and Nurse B shifts are identical; there is no other 
conceivable reason for the apparent difference other than the presence of one nurse or the other. 

This data structure is called a (2 by 2) contingency table: the standard way to analyse this, to test the 
hypothesis that there is no difference in the death rates attributable to the nurses, is “Pearson's chi-
squared test”. This is an elementary technique, taught in the middle years of high school (eg GCSE level 
in England and Wales). This reveals that the probability of observing a difference in apparent death rates 
as large as, or larger than, that seen in the table, if there was really no difference is 14% (that is the p-
value is 0.14). That means that if you were to repeatedly allocate 24 deaths and 56 survivals into two 
groups of 40 patients at random, a difference in apparent rates as large as that in Table 5 would be 
obtained about 1 time in 7. We have to conclude there is no significant difference. It would be misleading 
to the court to testify that there was a difference. A p-value less than 0.05 is a pre-requisite for 
publication in the scientific literature (and this is not a tough standard, very many scientific “findings” are 
never replicated by other scientists). 

The p-value above is calculated as follows. Since 24 out of the 80 patients die, if there were no nurse 
differences, you would expect that (24/80) of 40, ie 12, of the deaths would occur on Nurse A’s shift. In 
the same way, for each of the other counts in the table (9, 25 and 31) you would expect respectively (12, 
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28 and 28). We denote the observed numbers (15, 9, 25, 31) by 𝑂௜ and the expected numbers (12, 12, 
28, 28) by 𝐸௜, then calculate  

𝐺 = ෍
(𝑂௜ − 𝐸௜)ଶ

𝐸௜

ସ

௜ୀଵ

 , 

(that is, we take each of the cells of the table in turn and square the difference between the observed 
and expected numbers, and divide by the expected number; these fractions are added up over the four 
cells), which is 2.143. To convert this to the p-value quoted, we can use standard printed tables of the 
chi-squared distribution, or the function found on many calculators and all statistical software packages. 

In contrast, if all of the numbers in Table 5 were exactly 10 times larger (150, 90, and so on), then the 
Pearson chi-squared statistic 𝐺 would be 21.43 and the p-value turns out to be 0.000004, so there would 
be overwhelming evidence that the apparent different in death rate was not due to chance. (This is an 
example of the point made in Section 4(f) that “coincidental fluctuations from population means are more 
likely with small samples…”).82  

Contingency tables of any size, not just 2 by 2, can be analysed with Pearson’s chi-squared test, but still 
very few criminal cases are simple enough to fit into this setting. Nevertheless, the analysis can be 
extended to deal with much more complex situations, allowing in particular more than one causal factor, 
and different durations of time. The more general framework is that of Poisson log-linear models, which 
are an example of generalised linear models. This is also a standard methodology, but one now taught 
not at high school but in undergraduate courses in mathematics and statistics. When applied to a 2-way 
contingency table, the results are the same.  

These methods are provided in standard statistics packages, and will be part of the toolbox of all 
practicing professional statisticians. The assumptions underlying their use are simply those mentioned 
above, and courts should be able to accept results of such analyses in expert witness testimony, just as, 
for example, a scientist would expect to be able to present scientific evidence relying on data from 
electron microscopes or mass-spectrometers without needing to explain to judge and jury the physics 
needed to say how these complex machines function. In short, an expert witness, including a statistician, 
must be free to use adequate methodology for the task. In Appendix 8, we show computer code and 
output for the analyses in this section, using the well-regarded statistical system R, which is freely and 
universally available.  

To illustrate appropriate methodology for analysing data on counts of deaths in different periods in the 
presence of other possible causal factors, consider the artificial example from Table 4 of Section 4. The 
deaths have been tabulated and summarised in the counts in four different categories of shifts. Note that 
these categories differ in various ways – they are of different durations; some are morning shifts, not all; 
and for some but not all the nurse in question is on duty. The rates of death vary between the extremes 
of 4 in 28 shifts and 2 in 2 shifts, a considerable difference, but can we attribute these differences in rate 
to the morning/other shift factor, or to the presence of the nurse, whilst allowing for the fact that among 
these small counts there will also be random variation?  

 

82 See also Appendix 2. 
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To correctly assess the extent to which the deaths can be attributed to the presence of the nurse we 
must compare two hypotheses:  

(1) that the only cause of systematic difference in rates is the shift effect, and  

(2) that both the shift effect and the presence of the nurse have a systematic effect on the rates.  

This way of posing the question accords with both sound scientific practice, and the criminal law principle 
of in dubio pro reo83. It is incorrect, and prejudicial, simply to examine whether the presence of the nurse 
affects the rates whilst ignoring the other potential causal factor. 

This point is illustrated in the analyses of the Table 4 “unbiased investigation” data summarised in the 
final rows of that Table and in Table 6. If we ignore the shift effect, we are simply comparing the rates of 
10 8 per 15 shifts with 6 8 per 30 shifts when the nurse is or is not on duty. The Poisson log-linear 
analysis (details explained in Appendix 6, with code in Appendix 8) gives a p-value of 1.75% (0.017015) 
for the likelihood ratio test that the nurse’s presence has no effect on the rates – and we would 
conventionally call this result significant, which would be incriminating. However, if we follow the correct 
practice of comparing hypotheses (1) and (2) above, the p-value becomes 37.830.1% (0.378301). 
Because this higher p-value is not statistically significant, it provides no basis for rejecting hypothesis (1) 
and therefore cannot be incriminating. Table 6 also gives the expected numbers of deaths in each 
category of shifts, the maximum likelihood estimates according to the statistical models being fitted in the 
two approaches. It is easily verified by inspection that the values in the case of the correct analysis 
shown in the 6th column fit the observed data (4th column) much better than do the expected numbers 
under the incorrect analysis (5th column). 

Table 6 Continuing the example in Table 4 

Number of 
shifts 

Nurse Shift Deaths Expected deaths 
ignoring morning effect 

Expected deaths 
allowing morning effect 

8 on duty morning 7 5.336.4 7.8743 

72 on duty other 31 4.671.6 2.130.57 

27 off duty morning 24 0.401.6 1.133.57 

28 off duty other 4 5.606.4 4.8743 

  

 

83 The principle that a defendant may not be convicted by a court when doubts about his or her guilt remain. 
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Appendix 7: Usual practice in medical statistics and epidemiology.  

Two types of clusters of events are routinely investigated in medical statistics and epidemiology: 
outbreaks of food poisoning and clusters of severe adverse events or usually rare diseases. The 
difficulty of identifying possible causal factors is multi-faceted. The methods developed in medicine to 
bring together evidence from laboratory science, observational and experimental studies are important 
tools for investigation.84  

The standard first approach is to design and conduct a case-control study, a rapid and relatively 
inexpensive method. For each precisely defined incident, one or more control incidents are found, and 
the antecedents investigated. The design stage establishes clear definitions of events, and consistent 
approaches to seeking evidence for cases and controls. The varieties of biases which can arise are well-
studied, and methods to minimise the risks of such biases established. It is standard for those recording 
data on possible explanatory variables to ‘be blind’ to which people are cases or controls. For deaths, 
experts in the quality and coding of death certificates might provide a necessary complement to 
physicians or pathologists.  

In the study of causes of disease, nine aspects of association, the Bradford Hill guidelines, are 
considered.85 It would be sensible to consider these in other investigations of causes, as is happening in 
areas of civil litigation.86 Detailed consideration of uncertainty is preferable to false confidence in a single 
explanation.  

Comparisons of different authorities’ methods of investigating clusters of events might well lead to 
mutual benefit.87 The methods in Public Health England guidelines for investigating non-infectious 
disease clusters possibly due to environmental exposures are relevant to clusters of death.88 As well as 
suggested membership, with roles and responsibilities, of an investigation team, the guidelines include a 
substantial list of useful data sources. 

An example of an efficient investigation is that of a cluster of serious events in children with cystic 
fibrosis. 

a) In 1993, doctors at Alder Hey Children’s Hospital (AHCH), Liverpool, noticed that five children 
with cystic fibrosis (a condition in which the lungs and digestive system are clogged with thick 
sticky mucus) who needed surgery because of fibrosing colonopathy (obstruction of the intestine) 
presented between July and September, 1993. One response to this might have been to suggest 
that doctors at AHCH were failing in some way. 

b) On 8 January 1994, a short report was published, which reported that “The only consistent 
change in management had occurred 12-15 months preciously when all five had switched to” 
high-strength pancreatic enzymes (high dose drugs). 89 

 

84 ICCA & RSS, 2019, Statistics and probability for advocates, p.18. 
85 Hill, AB, 1965. 
86 ICCA & RSS guide, 2019, p.19. 
87 Stewart, Ghebrehewet & Jarvis (2016). 
88 Public Health England (2019). 
89 Smyth, et al, 1994. 
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c) At the time the report was published, a case-control study to investigate the findings had been 
started: this is the appropriate method of reacting to the reports of new adverse events among 
patients. The Medicines Control Agency had been informed of the cases, and had issued 
appropriate warnings. There were about 7600 people known to have cystic fibrosis in the UK; 
5/7600 is 0.07%. 

d) On 11 November 1995, about 2 years later, the results of the case-control study were 
published.90 

e) The study had 14 cases of fibrosing colonopathy, with each case matched to four controls. Data 
on these 70 patients showed a significant (at 5%) odds ratio of 1.45 per extra 1,000 high-strength 
capsules, and indicated which two particular proprietary formulations were associated with the 
highest odds ratios. That is, this association between particular formulations and fibrosing 
colonopathy could have arisen by chance one time in twenty. 

f) Laxative use was also found to be associated with fibrosing colonopathy; odds ratio 2.42 (95% 
Conf. Int 1.20-4.94). From a case-control study, one cannot establish whether laxative use was a 
cause of fibrosing colonopathy, or a symptom of it. 

g) Six of the 14 cases received care at AHCH. Care at Liverpool was associated with approximately 
a two-fold increase in risk of fibrosing colonopathy. If taken alone, this risk is statistically 
significant at the 4 percent level (p=0.04%), but adjusting for high-dose drugs removes the 
significance (p=0.3 or p=0.8). 

h) In deciding whether to suggest that AHCH doctors were negligent, or actively harming children 
with cystic fibrosis, one must consider the competing explanations for fibrosing colonopathy.  

 

90 Smyth, et al, 1995. 
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Appendix 8: Annotated code and output 

This appendix may be of limited interest to readers who are not statisticians, but is included for two main 
reasons. One, in the interests of full disclosure, is to verify the results in the illustrative numerical 
examples in Sections 4(f) and 5(c), and the calculations in Appendix 2, and make them completely 
reproducible. The other is that the codes may serve as templates for investigators and expert witnesses 
undertaking similar analyses in future, and a starting point for the more elaborate analyses that will be 
necessary in many real cases. These might entail additional explanatory factors, interactions between 
them, and possibly additional variables modelled as random effects. The last-mentioned here will 
necessitate use of generalised linear mixed models, available in R by using the lme4 package, for 
example. 

Analysis in Table 3 

Input 

Create a 2 by 2 matrix containing the data for the biased investigation: deaths and survivals for the 
before and after cases, and display the data. 

biased<-matrix(c(5,95,30,170),2,2) 
biased 

Conduct Fisher’s test for equality of the odds ratios before and after, against the alternative that the odds 
on survival is less. 

fisher.test(biased,alternative='less') 

Repeat for the unbiased investigation 

unbiased<-matrix(c(10,20,90,180),2,2) 
unbiased 
fisher.test(unbiased,alternative='less') 

Output 

Biased case 

> biased 
     [,1] [,2] 
[1,]    5   30 
[2,]   95  170 
 
> fisher.test(biased,alternative='less') 
 
        Fisher's Exact Test for Count Data 
 
data:  biased 
p-value = 0.006818 
alternative hypothesis: true odds ratio is less than 1 
95 percent confidence interval: 
 0.0000000 0.7151649 
sample estimates: 
odds ratio  
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 0.2992371  

Unbiased case 

> unbiased<-matrix(c(10,20,90,180),2,2) 
> unbiased 
     [,1] [,2] 
[1,]   10   90 
[2,]   20  180 
 
> fisher.test(unbiased,alternative='less') 
 
        Fisher's Exact Test for Count Data 
 
data:  unbiased 
p-value = 0.5876 
alternative hypothesis: true odds ratio is less than 1 
95 percent confidence interval: 
 0.00000 2.08157 
sample estimates: 
odds ratio  
         1  

Analysis in Tables 4 and 6 

Input 

Create data frame containing the response variables deaths, two explanatory factors nurse and 
morning, and the variable shifts, the number of shifts for that row of the table, used on a log-scale as 
an offset since we are modelling rates of deaths per unit time. 

shifts<-c(8,7,22,7,28) 
nurse<-as.factor(c('yes','yes','no','no')) 
morning<-as.factor(c('yes','no','yes','no')) 
deaths<-c(7,3,21,4,4) 
data<-data.frame(shifts,morning,nurse,deaths) 
print(data) 

Fit Poisson log-linear models for rates of death, both with just nurse included as an explanatory 
variable, and with morning also included. Print analysis of deviance table and fitted values in each case 

fitN<-glm(deaths~nurse+offset(log(shifts)), 
family=poisson(),data) 

print(anova(fitN,test='Chisq')) 
print(fitted(fitN)) 
fitMN<-glm(deaths~morning+nurse+offset(log(shifts)), 

family=poisson(),data) 
print(anova(fitMN,test='Chisq')) 
print(fitted(fitMN)) 

Output 

Display of data frame. 
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  shifts morning nurse deaths 
1      8     yes   yes      7 
2      7      2      no   yes      31 
3      2     7     yes    no      24 
4     28      no    no      4 

Analysis of deviance table where only nurse is fitted. Note that the p-value for the nurse effect is 
0.0172801509, ie 1.75%, so apparently statistically significant. 

Analysis of Deviance Table 
 
Model: poisson, link: log 
 
Response: deaths 
 
Terms added sequentially (first to last) 
 
 
      Df Deviance Resid. Df Resid. Dev Pr(>Chi)   
NULL                      3     9.7904           
nurse  1   5.9056         2     3.8849  0.01509 * 
NULL                      3     10.570            
nurse  1   5.6678         2      4.902  0.01728 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Fitted values for this model. 

  1   2   3   4 

6.4 1.6 1.6 6.4       1        2        3        4  

 

5.333333 4.666667 0.400000 5.600000  

Analysis of deviance table where morning and nurse are both fitted. Note that the p-value for the 
nurse effect is now 0.3784930145, i.e. 37.830.1%, so is not statistically significant. 

Analysis of Deviance Table 
 
Model: poisson, link: log 
 
Response: deaths 
 
Terms added sequentially (first to last) 
 
 
        Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
NULL                        3     9.7904             
morning  1   8.3494         2     1.4411 0.003858 ** 
nurse    1   1.0678         1     0.3733 0.301449  NULL                        
3    10.5699             
 

Formatted: Space Before:  12 pt, After:  12 pt
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morning  1   8.6617         2     1.9081  0.00325 ** 
nurse    1   0.7756         1     1.1325  0.37849    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Fitted values for this model. 

        1         2         3         4 
7.4254393 0.5745607 3.5745607 4.4254393       1        2        3        4  
7.872829 2.127171 1.127171 4.872829 
 

Biased investigation 

This proceeds in exactly the same way, but using the biased data 

deaths<-c(8,2,3,3) deaths<-c(8,4,1,3) 

 

in the input. 

Analysis in Table 5 

Input 

Create data frame consisting of a numerical response variable count and two factors nurse, the 
explanatory variable, and died, the response category. 

nurse<-as.factor(c('A','B','A','B')) 
died<-as.factor(c('yes','yes','no','no')) 
count<-c(15,9,25,31) 
data<-data.frame(died,nurse,count) 
print(data) 

Fit a Poisson log-linear model, allowing for main effects nurse and died, and an interaction between 
them. 

fit<-glm(count~died*nurse,data,family=poisson()) 

Output analysis of deviance table: the interaction term quantifies the differential effect of the two nurses 
on survival. 

print(anova(fit,test='Chisq')) 

The analysis of deviance table by convention uses the deviance as the test statistic: the following 
calculation demonstrates that it is numerically very similar to Pearson’s chi-squared statistic, as defined 
in the text. 

E<-c(12,12,28,28) 
print(sum((count-E)^2/E)) 
print(2*sum(count*log(count/E))) 
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Output 

Display of data frame. 

  died nurse count 
1  yes     A    15 
2  yes     B     9 
3   no     A    25 
4   no     B    31 

Analysis of deviance table. Note that the p-value for the died:nurse interaction is 0.1416, ie 14.2%, so 
not statistically significant. 

 

Analysis of Deviance Table 
 
Model: poisson, link: log 
 
Response: count 
 
Terms added sequentially (first to last) 
 
 
           Df Deviance Resid. Df Resid. Dev  Pr(>Chi)     
NULL                           3    15.3254               
died        1  13.1653         2     2.1601 0.0002852 *** 
nurse       1   0.0000         1     2.1601 1.0000000     
died:nurse  1   2.1601         0     0.0000 0.1416334     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Values of the two test statistics, the Pearson chi-squared statistic and the deviance statistic as used in 
the table above. They are very similar numerically, so it is immaterial which is used in calculating the p-
value. 

[1] 2.142857 
[1] 2.160122 

Calculations in Appendix 2 

Input 

Set up 4 illustrative data sets 

casea<-matrix(c(10,30,5,35),2,2) 
caseb<-matrix(c(100,300,50,350),2,2) 
casec<-matrix(c(10,390,5,395),2,2) 
cased<-matrix(c(55,345,5,395),2,2) 

Define function to conduct chi-squared test, and calculate relative risk and absolute risk difference 

comparerisks<-function(y) 
{ 

Formatted: French (France)
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ct<-chisq.test(y,,FALSE) 
cat('statistic',ct$statistic,'  p-value',ct$p.value,'\n') 
 
risks<-y[1,]/apply(y,2,sum); cat('risks',risks,'\n') 
rr<-risks[1]/risks[2] 
ard<-risks[1]-risks[2] 
cat('RR',rr,'  AR difference',ard,'\n') 
} 

Apply function to data sets 

casea 
comparerisks(casea) 
caseb 
comparerisks(caseb) 
casec 
comparerisks(casec) 
cased 
comparerisks(cased) 

Output 

> casea 
     [,1] [,2] 
[1,]   10    5 
[2,]   30   35 
> comparerisks(casea) 
statistic 2.051282   p-value 0.1520781  
risks 0.25 0.125  
RR 2   AR difference 0.125  
> caseb 
     [,1] [,2] 
[1,]  100   50 
[2,]  300  350 
> comparerisks(caseb) 
statistic 20.51282   p-value 5.923318e-06  
risks 0.25 0.125  
RR 2   AR difference 0.125  
> casec 
     [,1] [,2] 
[1,]   10    5 
[2,]  390  395 
> comparerisks(casec) 
statistic 1.698514   p-value 0.1924825  
risks 0.025 0.0125  
RR 2   AR difference 0.0125  
> cased 
     [,1] [,2] 
[1,]   55    5 
[2,]  345  395 
> comparerisks(cased) 
statistic 45.04505   p-value 1.925539e-11  
risks 0.1375 0.0125  
RR 11   AR difference 0.125  

Formatted: French (France)
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Professor Peter Green FRS, Emeritus Professor of Statistics, University of Bristol, and Distinguished 
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