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Introduction to Bayesian model determination

Model selection in a Bayesian setting

One of the attractions of the Bayesian approach to modelling and
inference is that uncertainty in the model (and in truth, there is always
is uncertainty) is naturally dealt with in the same paradigm.
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Model selection in a Bayesian setting

One of the attractions of the Bayesian approach to modelling and
inference is that uncertainty in the model (and in truth, there is always
is uncertainty) is naturally dealt with in the same paradigm.
To a Bayesian, uncertainty in

@ data

@ parameters

@ model

may be different things philosophically, but they can all be treated in
the same way mathematically, through probability distributions.
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Hierarchical model

A natural set-up consists of
@ a prior p(k) over models k in a countable set K, and

o for each k

e a prior distribution p(6«|k), and
o alikelihood p(Y|k, 6k) for the data Y.
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Hierarchical model

A natural set-up consists of
@ a prior p(k) over models k in a countable set K, and
@ for each k
e a prior distribution p(6«| k), and
o alikelihood p(Y|k, 6k) for the data Y.

For definiteness and simplicity, suppose that p(6x|k) is a density in nk
dimensions, and that there are no other parameters, so that where
there are parameters common to all models these are subsumed into
each 0, € R,

Additional parameters, perhaps in additional layers of a hierarchy, are
easily dealt with. All probability distributions are proper.
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Introduction to Bayesian model determination

Hierarchical model as DAG

The generic hierarchical model
for model choice

p(k) @ model indicator
p(8, | k) model-specific parameter
ply1ke) (y ) o
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Introduction to Bayesian model determination

Note the generality of this basic formulation: it embraces both
@ genuine model-choice situations, where the variable k indexes the
collection of discrete models under consideration, but also
@ settings where there is really a single model, but one with a
variable dimension parameter, for example a functional
representation such as a series whose number of terms is not
fixed (in which case, k is unlikely to be of direct inferential interest).
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A simple model choice problem in regression

We have data (x;, y;),i = 1,2,...,nand we entertain two alternative
models, equally probable a priori:

Q@ k=1:Yx;~ N(a+ Bx;,0°)
Q k=2:Yxi~ N(y+de*/(1+ e%),o?)
Note that one model has 3 parameters, the other 4.

How can we make Bayesian inference about (k, ), where
01 = (o, 8,0) and 0 = (v,9,¢,0)?
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Polynomials
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Trans-dimensional problems

What if the number of things you don’t know is one of the things you
don’t know?
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Trans-dimensional problems

What if the number of things you don’t know is one of the things you
don’t know?

variable selection

finite mixture estimation

change-point analysis

nonparametric hazard estimation

automatic curve fitting (degree, discontinuities)
ARIMA model fitting

graphical model determination

ion channel data, quantitative trait locus analysis
model-based CART

image segmentation, object recognition
restoring old movies
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Recent real non-academic application areas

Applications in Geophysical Applications in Ecology and
sciences the Environment
Geophysical inversion Geophysical inversion
Geophysical source Phylogenetics and biodiversity
reconstruction Animal abundance
Geophysical electrical resistivity Ecology of wildlife

Ground flow models Ecology of salmon

Air pollution, greenhouse gases, Ecology, conservation,

remote sensing environment

Air pollution, change point models Remote Sensing land use
Climate and land models
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Recent real non-academic application areas

Agricultural and Medical Applied image analysis and
applications computer vision

QTLs in agriculture Computer vision - object tracking
Protein-DNA interactions and Image and classification using
medical implications LiDaR

Genetics and disease aetiology Imaging of geosynchronous
Spatial epidemiology of Chagas orbits, managing space debris
disease Mixture modelling, image analysis
Social and commercial NMR

applications MR

Health Insurance claim data
Financial modelling
Criminology
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Reporting inference about model and parameter

The joint posterior

p(k)p(0kK)p(Y |k, Ok)
Ywex S P(K)P(O IK)p(YIK', 0),)d0;,

can always be factorised as

p(k,0x|Y) =

p(k, 0l Y) = p(KIY)p(0ilK, ¥)
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Reporting inference about model and parameter

The joint posterior

p(k)p(0k|k)p(Y |k, bk)
k,0kY
P ORY ) = S T b k(6 [k p( VI, O, )7,

can always be factorised as

p(k, 0l Y) = p(KIY)p(0ilK, ¥)

— very often the basis for reporting the inference, and in some of the
methods mentioned below is also the basis for computation.
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Bayes factors, Evidence

Perhaps you didn’t think you wanted to report p(k|Y)?
Of course, with these posterior probabilities, we can report Bayes

Factors
g, - PLYIK) _ p(kY) . p(k)

(Y pdY) T p(l)
for pairwise comparison of models.

For some, the Evidence (= marginal likelihood) p(Y|k) has an intrinsic
meaning and interpretation.
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Bayesian model averaging, prediction

We can do model averaging
E(FIY) =Y [ Flk.0)p(k. 04 V)00,
k

for any function F with the same interpretation in each model; the
expectation can be estimated simply by averaging F along the entire
run, essentially ignoring the model indicator k.
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Bayesian model averaging, prediction

We can do model averaging
E(FIY) =Y [ Flk.0)p(k. 04 V)00,
k

for any function F with the same interpretation in each model; the
expectation can be estimated simply by averaging F along the entire
run, essentially ignoring the model indicator k.

As an example, we can do prediction:

p(Y*1Y) =" p(Y¥|k, Y)p(k|Y)
k
a posterior-weighted mixture of the within-model-k predictions

p(Y Ik Y) = [ P(Y* K ORIk, ¥)d0,
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What do we need to compute?

So, however we wish to report our inference about model selection and
parameter estimation, the computation we need to do is equivalent to
computing the joint posterior p(k, 0x|Y) = p(k|Y)p(bk|k, Y).
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What do we need to compute?

So, however we wish to report our inference about model selection and
parameter estimation, the computation we need to do is equivalent to
computing the joint posterior p(k, 0x|Y) = p(k|Y)p(bk|k, Y).

The only absolutely general methods we know for computing the joint
posterior use simulation, and MCMC is by far the most important of
these in current practice.
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What is MCMC?

Monte Carlo = using the Law of Large Numbers (LoLN) to do
calculation.

1 N
NZX(” —
t=1

it X(1), X, .. arei.id. with E(XO) = .
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What is MCMC?

Monte Carlo = using the Law of Large Numbers (LoLN) to do
calculation.

1 N
NZX(” —
t=1

it X(1), X, .. arei.id. with E(XO) = .

Or more generally,
N
1
N Z g(X) = u
t=1

it X(, X@) . are i.i.d. with E(g(X1)) = p.
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What is MCMC?

Markov chain Monte Carlo = using the LoLN for Markov chains to do
calculation.

N

1
NZQ(XU)) — M

t=1

it X(W, X .. form an ergodic Markov chain whose invariant
distribution 7 has E(g(X®)) = [ g(x)7(dx) =
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Why is it interesting?

@ Central to computational Bayesian inference (and computation in
many other fields, e.g. statistical physics, spatial stochastic
processes, etc...) is the need to calculate expectations and
probabilities under complex high-dimensional distributions

@ Itis much easier to construct and simulate a Markov chain with a
specified invariant (‘target’) distribution than an independent
random sample from that distribution
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Analysis of Normal random sample

Data Yy, Ya,..., Y, are a random sample from N(p, o?).

Independent priors on p and o:

po~ N &™)
o% ~ T[(a,p)

(these are only conditionally conjugate).

Joint posterior:

P, 0?Y) o (o?) 12

k(i — 2 Yi_ 2
. exp{_;;_ w9 _Z(ZUZM)}

which is not of standard form.
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Analysis of Normal random sample

‘Full conditionals’ are easily found:

o2 Y + ke 1
Y ~ N
plo: < oc2n+k o?n+ KJ)

oY ~ T(a+n/2,8+>(Yi—n?/2)

and we can implement the so-called Gibbs sampler by alternately
drawing 1 and o2 from these distributions.

This defines a Markov chain with states X0 = (40, 5(!)), whose
transition probabilities depend on Y.
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Analysis of Normal random sample

Gibbs sample of
size N = 10.
Posterior sample
of (u, o) from data
with n =10,

Y =15, 52 = 4.
Uninformative
prior.

Peter Green (Bristol/UTS)
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Analysis of Normal random sample

Gibbs sample of
size N = 1000.

Posterior sample <]

of (u, o) from data ° Jo.
with n = 10, >

Y =15, 52 = 4. o
Uninformative
prior.

12 13 14 15 16 17 18
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Analysis of Normal random sample

We can show that the equilibrium distribution of this chain
XD = (u® o0 t =12 ... is exactly p(u, o|Y), the posterior
distribution of the parameters given the data Y.
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Analysis of Normal random sample

We can show that the equilibrium distribution of this chain
XD = (u® o0 t =12 ... is exactly p(u, o|Y), the posterior
distribution of the parameters given the data Y.

And the chain is ergodic, so this is also the limiting distribution of the
chain
(10,0D) 2 p(u, oY)

(note that the limit is a distribution, not a point).
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Analysis of Normal random sample

We can show that the equilibrium distribution of this chain
XD = (u® o0 t =12 ... is exactly p(u, o|Y), the posterior
distribution of the parameters given the data Y.

And the chain is ergodic, so this is also the limiting distribution of the
chain
(10,0D) 2 p(u, oY)

(note that the limit is a distribution, not a point).
The law of large numbers applies, and for any function g,

N

1

N2 9o —>/g 1, 0)p(, 0| Y)dpdo
t=1
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Analysis of Normal random sample

Marginal posterior S
distributions of 1. 5 | .
and o from data ¥ . 10 18
with n =10,
Y =15,82 = 4. -
Uninformative s
prior. 3
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Central limit theorem

Under weak conditions, ergodic Markov chains also satisfy a central
limit theorem

o

N
VN (,1, S g(x() - u) 4 N(O, )
t=1

as N — oo, where o2 = var(g(X)) under the invariant distribution, and
7 is the integrated autocorrelation time, 7 = Y"7° ___ ~; where ~; is the
lag-t equilibrium autocorrelation of {g(X())}.
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Central limit theorem

Under weak conditions, ergodic Markov chains also satisfy a central
limit theorem

VN (1 ¢ d

|y 229X —u | 5 N(O.7)
7 t=1

as N — oo, where o2 = var(g(X)) under the invariant distribution, and

7 is the integrated autocorrelation time, 7 = Y"7° ___ ~; where ~; is the

lag-t equilibrium autocorrelation of {g(X())}.
Note that unlike conventional numerical quadrature methods, the error
does not scale adversely as the dimension d increases — we always

have the “square root law” (although to be fair, typically = may increase
with d).
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Convergence and efficiency

To evaluate performance of an MCMC method, we need to understand
(and discriminate between) two different things:

@ Convergence: how quickly does X0 % =2 (uniform /geometric
ergodicity, bounds on TV norm, etc.)

© Efficiency: determined by autocorrelation times 7 for functionals
g9(X) of interest (which can be estimated empirically to find
MCSE’s).
One MCMC method may dominate another on one criterion and not
the other.
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MCMC theory and recipes

How do you construct a Markov chain for a given
target distribution?

We have a target distribution = on a space Q, perhaps R?. We want to
construct and simulate a Markov chain X(), X2 that is ergodic
and has invariant distribution 7. Suppose the transition matrix is P.
We need two things:

@ risinvariant for P, i.e. >, n(x)P(x,y) = n(y) (in discrete
distribution notation)

@ Pisirreducible
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MCMC theory and recipes

How do you construct a Markov chain for a given
target distribution?

We have a target distribution = on a space Q, perhaps R?. We want to
construct and simulate a Markov chain X, X(2) . that is ergodic
and has invariant distribution . Suppose the transition kernel is P,
P(x,A) = P(X(H1) ¢ AX(D = x).
We need two things:

@ risinvariant for P, i.e. [ w(dx)P(x,A) = n(A) (in general

measure-theoretic notation)
@ Pisirreducible
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Detailed balance and reversibility

In practice, rather than check invariance, we usually look for detailed
balance, which is stronger but easier to check:

7(X)P(x,y) = nw(y)P(y, x) for all x, y, or

w(dx)P(x,dy) = w(dy)P(y, dx) for all x, y.

If this holds, the chain is reversible. Most, but not quite all, Markov
chains of use in MCMC are reversible, or are built from reversible
pieces.
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Myths about MCMC 1

We need aperiodicity —
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Myths about MCMC 1

We need aperiodicity — we don’t, since we do not need convergence in
distribution of g(X(®), only of the ergodic averages N~1 =N | g(Xx®) .
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MCMC theory and recipes

Metropolis-Hastings

We will explain this in a discrete distribution notation: =(x) is target
distribution; P(x, y) is the transition ‘matrix’.

When current state is X() = x:

@ Propose a new state x’, drawn from distribution Q(x, x”)
@ With probability a(x, x’), given by

a(x,x") = min {171(’(/)0(’(/”()}

set new state X('*1) = x/, otherwise stay where you are:
X(t+1) — X
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MCMC theory and recipes

Metropolis-Hastings

We will explain this in a discrete distribution notation: =(x) is target

distribution; P(x, y) is the transition ‘matrix’.
When current state is X0 = x:

@ Propose a new state x’, drawn from distribution Q(x, x”)
@ With probability a(x, x’), given by

a(x,x") = min {171(’(/)0(’(/”()}

set new state X('*1) = x/, otherwise stay where you are:
X(t+1) — X

For x’ # x, P(x, x") = Q(x, x")a(x, x');
P(x,x) = Q(x,x) + Zx’;ﬁx Q(x, X" )(1 — a(x, x")).
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Metropolis-Hastings: proof of detailed balance

We have to show that =(x)P(x, x") = n(x")P(x’, x); for x = x’ there is
nothing to prove.
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MCMC theory and recipes

Metropolis-Hastings: proof of detailed balance

We have to show that =(x)P(x, x") = n(x")P(x’, x); for x = x’ there is
nothing to prove.

For x # X/,
T(X)P(x, x') = 7(x)Q(x, X")a(x, X")
B N [ m()Q )
= m(x)Q(x, x") min {1’77()()0()(,)(’)}
= min{m(x")Q(x’, x), 7(x)Q(x, x)}

but this is symmetric in x and x’ so we are done.
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Multiple moves, schedules, irreducibility

In practice, it is useful to have not one type of transition or ‘move’ but
several, so we have a ‘dictionary’ of transition matrices { Pn(x, x’)} all
in detailed balance with respect to 7(x), e.g. MH matrices for different
proposals Qn,. These can be combined in many ways to yield an
overall transition matrix P(x, x’), e.g.

@ Deterministically, e.g. P = P1P>... Py
e Randomly, e.g. P=M">"_Pp
@ Palindromically: P = PiPs... PyPyPy_1...P;
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Multiple moves, schedules, irreducibility

In practice, it is useful to have not one type of transition or ‘move’ but
several, so we have a ‘dictionary’ of transition matrices { Pn(x, x’)} all
in detailed balance with respect to 7(x), e.g. MH matrices for different
proposals Qn. These can be combined in many ways to yield an
overall transition matrix P(x, x’), e.g.

@ Deterministically, e.g. P = P1P>... Py

e Randomly, e.g. P=M">"_Pp

@ Palindromically: P = PiPs... PyPyPy_1...P;
In all these cases, and others, = remains an invariant distribution, but
detailed balance may be lost.

We seek a combination so that P is irreducible (even if individual Py,
are not), and with good performance (see later).
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Important special cases of Metropolis-Hastings

@ Metropolis: Q(x, x") = Q(X, x)

@ Random walk Metropolis: Q(x, x’) = g(x’ — x)

@ Independence MH: Q(x, x') = g(x’) V x

@ Gibbs: Qm(x, x") = m(Xp|x—m) I[x] = Xx;, i # m] (the conditional
distribution of x,, holding other components fixed)
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Important special cases of Metropolis-Hastings

@ Metropolis: Q(x, x") = Q(X, x)
@ Random walk Metropolis: Q(x, x’) = g(x’ — x)
@ Independence MH: Q(x, x') = g(x’) V x
@ Gibbs: Qm(x, x") = m(Xp|x—m) I[x] = Xx;, i # m] (the conditional
distribution of x,, holding other components fixed)
Note that the last of these is the only one referring at all to the target —

for the others, the target is only used to calculate the acceptance
probability, not in random number generation.
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Myths about MCMC 2

Gibbs is the method of choice, we only use anything else if the full
conditionals 7 (x/,|x_m) are not easy to sample from —
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Myths about MCMC 2

Gibbs is the method of choice, we only use anything else if the full
conditionals 7 (x;,|x_m) are not easy to sample from — there are no
general reasons why Gibbs is best, and often it is very bad; the only
clear advantage is that you have fewer choices to make.
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MCMC practice

Why has MCMC been such a tremendous boon to
Bayesian statistics?

@ Algorithm generated by assumed model
@ Modularity
@ Product structure facilitates calculation of =(x’)/x(x) ratios, used

in
N (X Q(X', x)
a(x,x) =min {1’7r(x)0(x,x') }

@ We only need know 7 up to a hormalising constant
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Myths about MCMC 3

We should sub-sample (or thin) the MCMC sample X("), X(3) . in
order to reduce/eliminate autocorrelation among {g(X(")} —

Peter Green (Bristol/UTS) MCMC and model selection Bogotd, julio de 2013 38/107



Myths about MCMC 3

We should sub-sample (or thin) the MCMC sample X("), X(3) . in
order to reduce/eliminate autocorrelation among {g(X “))} we
shouldn’t, subsampling the sequence increases the asymptotic
variance of the ergodic average
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Myths about MCMC 4

Careful use of MCMC diagnostics gives you reassurance that your
chain has converged and that you are successfully sampling the target
distribution —
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Myths about MCMC 4

Careful use of MCMC diagnostics gives you reassurance that your
chain has converged and that you are successfully sampling the target
distribution — nothing in the past history of the process can tell you that
it will not jump to a new part of the sample space in the future
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Some strengths of sample-based Bayesian
computation using algorithms generated by the model

@ Freedom in modelling
e in principle, no limits
o well-adapted for models defined on sparse graphs
@ Freedom in inference
@ in principle, no limits
e can address questions only posed after simulation completed (e.g.
ranking and selection)
e opportunities for simultaneous inference
@ Allows/encourages sensitivity analysis
@ Model comparison/criticism/choice
@ Coherently integrates uncertainty

@ Only available method for complex problems
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Some weaknesses and dangers

@ Order /N precision

@ Possibility of slow convergence, especially when not diagnosable
(meta-stability)

@ Risk that fitting technology runs ahead of statistical science
@ Risk of undisciplined, selective presentation
@ Difficulty of validating code
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Adaptive MCMC

Except in small/easy problems, the choice of proposal distribution
Q(x, x’) is crucial in designing Metropolis-Hastings methods that
perform well enough.
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Adaptive MCMC

Except in small/easy problems, the choice of proposal distribution
Q(x, x’) is crucial in designing Metropolis-Hastings methods that
perform well enough.

An intuitive approach would be to adjust Q(x, x’) at time t based on the
history X(1), X ... X0 —put if we did that, (X)) would not be a
Markov chain! Then the straightforward limit theory no longer applies.
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Adaptive MCMC

Except in small/easy problems, the choice of proposal distribution
Q(x, x’) is crucial in designing Metropolis-Hastings methods that
perform well enough.

An intuitive approach would be to adjust Q(x, x’) at time t based on the
history X(1), X ... X0 —put if we did that, (X)) would not be a
Markov chain! Then the straightforward limit theory no longer applies.
We can legitimately:

@ Perform pilot runs — experiment until performance acceptable,
then run again to collect samples

@ Only start collecting samples after adjustment ceases
@ Prove new ergodic theorems!
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Coupling from the past (CFTP)

Here is a beautiful idea due to Propp and Wilson (1995): a way of
organising a Markov chain simulation so that after a finite but random
amount of work, it exactly delivers a sample from the target distribution!

For example, look < | \/ XfXX

at this partial N X\/ xfxf
symmetiorandom < NWAYAY
walk with N _\)&& /& 7\

reflecting barriers:

State

-15 -10

Time
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Other Monte Carlo methods

ABC — approximate Bayesian computation

In some complex statistical models (e.g. in population genetics, spatial
statistics, ...), not only is the posterior/target distribution 7(x) only
known up to an unknown normalising constant, it cannot be evaluated

tractably at all.
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ABC — approximate Bayesian computation

In some complex statistical models (e.g. in population genetics, spatial
statistics, ...), not only is the posterior/target distribution 7(x) only
known up to an unknown normalising constant, it cannot be evaluated

tractably at all.

ABC methods provide a way to conduct MCMC-like sampling providing
you can simulate data from the assumed model for any parameter
value.
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Sequential Monte Carlo

a.k.a. particle filtering.

Dynamic models (time series, stochastic volatility models, state-space
models, hidden Markov chains, ...) form a huge class of statistical
models for which computational inference is needed — but the
interaction between the real time scale of the process and the artificial
time scale of the MCMC simulation poses problems.

These are being effectively addressed by particle filter methods — not
MCMC but iterative importance-sampling.
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Sequential Monte Carlo

a.k.a. particle filtering.

Dynamic models (time series, stochastic volatility models, state-space
models, hidden Markov chains, ...) form a huge class of statistical
models for which computational inference is needed — but the
interaction between the real time scale of the process and the artificial
time scale of the MCMC simulation poses problems.

These are being effectively addressed by particle filter methods — not
MCMC but iterative importance-sampling.

Tricks have been devised to deal with ‘static’ parameters, and there are
now reliable SMC approaches even for non-dynamic Bayesian
problems.
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Trans-dimensional problems

Most ‘trans-
dimensional’
problems can be
set up as
hierarchical
models

Peter Green (Bristol/UTS)

The generic hierarchical model
for model choice

p(k) @ model indicator
p6, | k) e model-specific parameter
p(y | k.6,) @ data
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Variable-dimension problems and RIMCMC

Trans-dimensional statistical inference: a simple
example

We have data (x;, y;),i = 1,2, ..., nand we entertain two alternative
models, equally probable a priori:

Q@ k=1:Yx;~ N(a+ Bx;,02?)
Q k=2:Yix;~ N(y+ e /(1 + &%), 0?)
Note that one model has 3 parameters, the other 4.

How can we make Bayesian inference about (k, ), where
01 = (o, B,0) and 0 = (7,9, ¢,0), using MCMC?
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Splines

1.0

-1.0

0.0 0.2 0.4 0.6 0.8 1.0
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Across- and within-model simulation

How to compute p(k, 6|Y)?

Two main approaches using MCMC:

@ across: one MCMC simulation with states of the form
(kvek) ~ p(k70k’Y)
@ within: separate simulations of 6, ~ p(6k|k, Y) for each k.
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Across- and within-model simulation

How to compute p(k, 6|Y)?

Two main approaches using MCMC:
@ across: one MCMC simulation with states of the form
(k. 0k) =~ p(k, 0k|Y)
@ within: separate simulations of 6, ~ p(6k|k, Y) for each k.
and beyond straight MCMC:
@ particle filter: SMC in place of MCMC

@ ABC: ‘likelihood-free’ methods where Y|k, 6, can be simulated but
p(Y |k, 6x) cannot be evaluated.

@ nested sampling
@ variational methods
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Across-model simulation: Reversible jump MCMC

The across-model MCMC simulator follows the ideal Bayesian, and
treats (k, 0) as a single unknown. The state space for an
across-model simulation is {(k, 0x)} = Ukec({k} x R™).

Mathematically, this is not a particularly awkward object. But at least a
little non-standard, when ny varies with k.
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Across-model simulation: Reversible jump MCMC

The across-model MCMC simulator follows the ideal Bayesian, and
treats (k, 0) as a single unknown. The state space for an
across-model simulation is {(k, 0x)} = Ukec({k} x R™).

Mathematically, this is not a particularly awkward object. But at least a
little non-standard, when ny varies with k.

We use Metropolis-Hastings to build a suitable reversible chain.

On the face of it, this requires measure-theoretic notation, which may
be unwelcome! The point of the ‘reversible jump’ framework is to
render the measure theory invisible, by means of a construction using
only ordinary densities. Even the fact that we are jumping dimensions
becomes essentially invisible.
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Variable-dimension problems and RIMCMC

Metropolis-Hastings

We will explain this first in a discrete distribution notation: 7 (x) is target
distribution; P(x, y) is the transition ‘matrix’.

When current state is X = x:

@ Propose a new state x’, drawn from distribution Q(x, x”)
@ With probability a(x, x’), given by

a(x,x") = min {171(’(/)0(’(/”()}

set new state X('*1) = x/, otherwise stay where you are:
X(t+1) — X

For x’ # x, P(x, x") = Q(x, x")a(x, x');
P(x,x) = Q(x,x) + Zx’;ﬁx Q(x, X" )(1 — a(x, x")).
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Metropolis-Hastings on general state spaces

7 is target distribution; P(x, B) is the transition kernel.

When current state is X() = x:
@ Choose move type m with probability c,(x)
@ Propose a new state x’, drawn from distribution Qn,(x, dx’)
© With probability am(x, x"), given by

m(AX")em(X") Qm(X', dx)
’ ﬂ'(dX)Cm(X)Qm(Xv dxl) }

am(x, x’) = min {1

(formally, this is a Radon-Nikodym derivative) set new state
X1 = x/| otherwise stay where you are: X(+1) = x
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Metropolis-Hastings on general state spaces

7 is target distribution; P(x, B) is the transition kernel.

When current state is X() = x:
@ Choose move type m with probability c,(x)
@ Propose a new state x’, drawn from distribution Qn,(x, dx’)
© With probability am(x, x"), given by

m(AX")em(X") Qm(X', dx)
’ ﬂ'(dX)Cm(X)Qm(Xv dxl) }

am(x, x’) = min {1

(formally, this is a Radon-Nikodym derivative) set new state
X1 = x/| otherwise stay where you are: X(+1) = x

For BZ x, P(x,B) = [.cg " m Cm(X)Qm(x, dx")am(x, X")dx’.

X
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Metropolis-Hastings: proof of detailed balance

We have to show that [, _, 7(dx)P(x,B) = [,,.g7(dx)P(x’, A) for all
A B.
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Metropolis-Hastings: proof of detailed balance

We have to show that [, _, 7(dx)P(x,B) = [,,.g7(dx)P(x’, A) for all
A B.

The LHS is the integral over A x B of

7(dx)P(x, dx") = 7(dx) Zcm X)Qu(x, dx")om(x, X'

(assuming AN B = {)) and the choice of am(x, X’) ensures that this is
symmetric in x and x’.
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Reversible jump MCMC

But we shouldn’t need to use (or even know) measure theory to do
numerical simulation!

A solution is to ‘model the program’. How do we simulate any Markov
chain? Given the current state X(9,
@ Generate some (uniform) random numbers u

@ Calculate the new state as a deterministic function of the old state
and the random numbers: X(+1) = p(X () y)
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Reversible jump MCMC

Reversible jump

MCMC is a
Metropolis-

Hastings method, t‘»
employing u

on-the-fly auxiliary
random variables
to make difficult
jumps between
values of

x = (k,0)in

Reversible jump

different spaces

Peter Green (Bristol/UTS)

MCMC and model selection

Bogotd, julio de 2013
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Reversible jump MCMC

Dimension matching

The total tu, tu
dimensions of I |
state and auxiliary | ", |

variables must be P =) . =

preserved

d+r=d+r'
1+2=2+1
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Reversible jump MCMC

Dimension matching

The total
dimensions of
state and auxiliary 'y <,
variables must be L 2 :
preserved &
X x’1
d+r=d+r
1+1=2+0
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Reversible jump MCMC

The acceptance probability can then be calculated explicitly:

m(Ax")Cm(X") Qm(x’, dx)
7(ax)Cm(x) Qm(x, dx’) }

am(x,x’) = min {1,

using ordinary densities.
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Reversible jump MCMC

The acceptance probability can then be calculated explicitly:
N m(dx")em(X")Qm(X’, dx)
Am(X, X°) = min {1’ 7(0X)Crm(X) Qim(x, AX)

- m(X)em(X)gm(U') |0(X', u")
‘m'”{1’ 7(x)em(X)gm(u) | O(x, u) }

using ordinary densities.
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Toy example

..... of no statistical use at all!

Suppose x lies in R U R2: 7(x) is a mixture:

with probability p1 = 0.4, x ~ fg = Beta(2, 3),

with probability po = 0.6, (X1, X2, 1 — X1 — X2) ~ fp = Dirichlet(2, 3, 4).
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Toy example

..... of no statistical use at all!

Suppose x lies in R U R2: 7(x) is a mixture:

with probability p1 = 0.4, x ~ fg = Beta(2, 3),

with probability po = 0.6, (X1, X2, 1 — X1 — X2) ~ fp = Dirichlet(2, 3, 4).
| will use three moves:

(1) within R: x — U(x — ¢, X + ¢€).

(2) within R?: (x1, x0) — (X2, X{).

(3) between R and R?

In R, choose (1) or (3) with probabilities 1 — ry, r; = 0.7.

In R?, choose (2) or (3) with probabilities 1 — r>, r, = 0.4.
Thus c3(x) = ry for all x € R and ¢3(x’) = ¢, for all x’ € R2.
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Dimension-changing with move (3)

Proposal:

To go from x € R to (xq, X2) € R?, draw u from U(0, 1) [so ga(u) = 1 if
0 < u < 1] and propose (x1, x2) = (x, u). For reverse move, no v’
required [write g5(u") = 1] and set x = xy. This certainly gives a
bijection: (x, u) < (xy, X2), with Jacobian = 1.

Acceptance decision:

(L () () gh()
o« = m'”{1’w(x> ) 6l

B , pafp(x,u) ro

- m'”{1 o170 =l '}

— min {17P2f2fD(X7 U)}
P+ r1f3(x)

a(x',u)
a(x, u)

For reverse move, o = min{1, (p1r1fg(x))/(p=r2fp(x, u))}.
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Toy example

after 1 sweeps

1.0

0.4

0.2

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Peter Green (Bristol/UTS) MCMC and model selection Bogotd, julio de 2013 61/107



Toy example

after 2 sweeps
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Toy example

after 3 sweeps
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Toy example

after 4 sweeps
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Toy example

after 5 sweeps
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Toy example

after 6 sweeps
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Toy example

after 7 sweeps
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Toy example

after 8 sweeps
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Toy example

after 9 sweeps

1.0

0.4
|

0.2

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Peter Green (Bristol/UTS) MCMC and model selection Bogotd, julio de 2013 61/107



Toy example

after 10 sweeps
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Toy example

after 20 sweeps
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Toy example

after 30 sweeps
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Toy example

after 40 sweeps
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Toy example

after 50 sweeps
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Toy example

after 100 sweeps
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Variable-dimension problems and RIMCMC

Toy example

Peter Green (Bristol/UTS)
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Toy example

after 300 sweeps
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Variable-dimension problems and RIMCMC

Toy example

Peter Green (Bristol/UTS)
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Variable-dimension problems and RIMCMC

Toy example

Peter Green (Bristol/UTS)
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Variable-dimension problems and RIMCMC

Toy example

Peter Green (Bristol/UTS)
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problems and RJ
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Toy example

model
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x1 ~ Beta(2,3)
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Variable-dimension problems and RIMCMC

Toy example
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Alternatives to joint model-parameter sampling

@ When marginal likelihoods p(Y|k) = [ p(Y|k,0k)p(0k|k)dby are
tractable, it's usually a good idea to compute them (thus

marginalising over 6,) then conduct search/sampling only over the
model indicator k.

@ Marginal likelihoods via within-model sampling.
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Within-model sampling

It is possible to use a run of a MCMC sampler for the within-model
posterior p(dx| Y, k) to estimate the marginal likelihoods p( Y |k),
separately, for each model k.
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Alternatives and relatives

Within-model sampling

It is possible to use a run of a MCMC sampler for the within-model
posterior p(dx| Y, k) to estimate the marginal likelihoods p( Y |k),
separately, for each model k.

Then these marginal likelihoods can be combined to compute Bayes

factors
p(Y|k)
p(Y|l)

By =
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Within-model sampling

It is possible to use a run of a MCMC sampler for the within-model
posterior p(dx| Y, k) to estimate the marginal likelihoods p( Y |k),
separately, for each model k.

Then these marginal likelihoods can be combined to compute Bayes

factors
B, — PLYIK)
p(Y|l)

and hence joint model-parameter posteriors

Pk, 041 Y) = PIK Y )p(6klK. ¥) = <2200 p(al. ¥)
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Within-model sampling

It is possible to use a run of a MCMC sampler for the within-model
posterior p(dx| Y, k) to estimate the marginal likelihoods p( Y |k),
separately, for each model k.

Then these marginal likelihoods can be combined to compute Bayes

factors
B, — PLYIK)
p(Y1l)
and hence joint model-parameter posteriors

Pk, 041 Y) = PIK Y )p(6klK. ¥) = <2200 p(al. ¥)

Estimating marginal likelihoods by MCMC is a subtle matter, and the
subject of much ongoing research.
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Some issues in choosing a sampler

@ How many models are there?

@ Do we want results across k, within each k, or for one k of
interest?

@ Do we need the Evidence (marginal likelihood) values p(Y|k)
absolutely, or only relatively?

@ Jumping between models as an aid to mixing (c.f. simulated
tempering: mixing may be better in the ‘other’ model)

@ Are samplers for individual models already written and tested?
@ Are standard strategies like split/merge likely to work?

@ Trade-off between remembering and forgetting 6, when leaving
model k
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The different ways that models can interconnect

@ completely unrelated

@ nested in some irregular way

@ mixture models (nesting and exchangeability)
@ variable selection (factorial structure)

@ graphical models (possibly with constraints such as
decomposability)
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Methodological connections and extensions

@ Jump—diffusion (Grenander & Miller, 1994, Phillips & Smith, 1996)

@ Point process representations and samplers (Geyer & Mgller,
1994, Stephens, 2000)

@ Product-space samplers (Carlin & Chib, 1995, Green & O’Hagan,
1998, Dellaportas et al., 2002)

@ Delayed rejection (Green & Mira, 2001)

@ Connections between reversible jump and continuous time
birth-and-death samplers (Cappé, Robert & Rydén, 2001)

@ Composite model space framework (Godsill, 2001)

@ Efficient construction of proposals (Brooks, Giudici & Roberts,
2003)

@ Automatic RJ sampler (Hastie, 2005)
@ Population RIMCMC and Interacting SMC (Jasra et al, 2007/8)
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Cyclones hitting the Bay of Bengal

141 cyclones over ]
a period of 100
years

(acyclone is a
storm with winds
>88kmh™") | e

time
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Cyclones hitting the Bay of Bengal

We model this
point process as
an W
inhomogeneous T
Poisson process, L
whose intensity is @ ‘

a step function h
with an unknown
number of steps; -

the dimension-

changing move hj+
requites splitting
and merging steps

,,,,,,,,,,,

S*
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Cyclones hitting the Bay of Bengal

Sample from the
posterior over step
functions. ‘ —
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Cyclones hitting the Bay of Bengal
change points is .
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Cyclones hitting the Bay of Bengal
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Cyclones hitting the Bay of Bengal
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CNV data

Log R ratio trace
reflects variation
in copy number

along the °
genome: data

from Chris Yau,

with thanks. "]
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Dow Jones data

Dow Jones weekly log returns
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Graphical models

The conditional independence graph G of a multivariate distribution
(for a random vector X, say) tells us much about the structure of the
distribution. G = (V, E) where the vertices V index the components of
X, and there is an (undirected) edge between vertices i and j, written
i~ j

unless X; 1L )(/ ‘ XV\{i,j}
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Bayesian graphical model determination

Given ni.i.d. samples X = (Xj, Xz, ..., Xj;) from a multivariate
distribution on R" parameterised by the graph G and parameters 6, a
typical formulation takes the form

p(G,0,X) = p(G)p(0|G)p(X|G, 0)

and we perform joint structural/quantitative learning by computing the
posterior p(G, 0|X) « p(G, 6, X).
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Graphical models
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Fig. 2. Most probable graphs for Fret's dataset, together with the associated probabilities.

Frets’ head data:
posterior probability on graphs (for highest probability graphs).
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Graphical models

(a) (b) (c)
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Fig. 3. Posterior distributions of the partial correlation coefficients for Fret's dataset. (a) For
variables (1, 2), (b) for (1, 3), (c) for (1, 4), (d) for (2, 3), (¢) for (2. 4), () for (3,4).
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Linkage Disequilibrium (p = 500, n = 60)
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Bayesian models for mixtures — context 1

K
yi~ Y _wf(-|6;) independently fori=1,2,....n
=

@ f(-|0) is a given parametric family

@ {y;} observed

@ {0}, {w;}, k unknown
Heterogeneous population: Groups j = 1,2,..., k, sizes o« w;.
Observation y; drawn from unknown group z;: latent allocation variable.

p(zi =j) =w; independently fori=1,2,...,n

Yilz ~ f(-|6z) independently fori=1,2,....,n
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Bayesian models for mixtures — context 2

k
yi~ Y _wf(-|6;) independently fori=1,2,....n
=

@ f(-|0) is a given parametric family
@ {y;} observed
@ {0}, {w;}, k unknown

Semi-parametric density estimation: (not prime focus here) use same
representation, but {z;} now artificial.
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Hierarchical model

p(k,0,w.z,y) = p(k)p(|k)p(w|k)p(z|w, k)p(y|0, z)
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Application of reversible jump MCMC to mixtures

We use two dimension-changing moves:
@ splitting/combining components
@ birth/death of empty components

(the former is essential, the latter is introduced simply to improve
mixing in some rather extreme cases)
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Split/combine move, for univariate normal mixtures

Propose to split a randomly chosen component (k — k + 1) or
combine two adjacent randomly chosen components (k — k — 1), and
reallocate affected observations.

(k,w,p,0,2) = (k£ 1,w ' o', 2)

Propose a parameter set in the new subspace that is intuitively roughly
as well supported by the posterior as the old set. We preserve
combined weight, mean and variance:

W= = W + W,
Wi e = Wi Ly + W 11,
(02 L 2Y e (12 4 A2 (12 + o2
Wi (e + o) = Wy, (uj; + o)) + W (f, + o)
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lllustration of split/combine proposal

H+ + +++0 0 40
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Acceptance probability for split move

For the split move the probability is min(1, A), where A is
p(k+1)

p(k)
WO 1+h o 1+k

Ji Jo K

(likelihood ratio) x

x(k+1)

X exp [—;/{{(uh — 5)2 + (g, — 5)2 — (pj= — 5)2}}

—a—1
B ‘7/‘2‘7/2 2, 2 2

I

d _
X {goa(Ur)gea(t)gr 1 (Us)}
kaalloc

2 2
ij*’Mh B /"L./Z‘O—ho-]g
Up(1 — uz)us(1 — uz)o
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Posterior distribution of k
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Fig. 6. Posterior distributions of k: comparison of sensitivity to hyperparameters between fixed and
random 8 models: (a) fixed 3, & = 2 and /(8/ ) varying between R/5 ( Yy R/10 (oveeerees )and R/20

(- - - -); (b) random B, a =2, g = 0.2 and ,/(g/ha) varying between R/5 (——), R/10 (-++eseeees ) and
R/20(- - - )
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Applications

Sample from the posterior distribution of the mixture
density

Each sweep:
k
(k, w,0) — f(-|k, w,0) = > wjf(-|6))
j=1

For Galaxy data:

sity

den
00 005 010 015 020 025 030

|
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Predictive densities from three data sets

density
00 05 10 15 20 25 30

density
o

density
005 010 015 020

00

Fig. 2. Predictive densities for (a) \he enzyme, (b) the acidity and (c) the galaxy data sets,

ditionally (-———) and ly (----) on various values of k: the curves dlsp]aycd are for
k = 2-6, except for the galaxy data, where they are for k = 3-6; in cach case note that it is only the
smallest k shown that gives an appreciably different estimate
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Applications

MCMC performance.
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Peter Green (Bristol/UTS)
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MCMC and model selection
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(a) Example of a trace of k for the galaxy data set, for 50000 sweeps after burn-in, and
cumulative occupancy fractions for (b) the galaxy, (c) the enzyme and (d) the acidity data sets, for a
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MCMC performance.  Parameter moves

Fig. 8. Traces of parameter estimates against visits to kK = 3, enzyme data
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Effective mixing within k

@ no trapping states

@ multimodality explored satisfactorily
— better mixing than a fixed-k sampler in case where posterior

has several well separated modes

0 1000 2000 3000 4000 5000 6000 -4 -2 0 2 4
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01000 3000 5000
sweep sweep

Variable k sampler
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Extensions

Other univariate distributions
@ discrete distributions
@ 2 parameter density suitably reparametrised

@ adding an overall shape parameter to model mixtures of skewed
distributions

Other mixture models
@ modelling the weights or allocations (genetic, spatial
applications...)
@ adapting the algorithm to mixture models based on a Dirichlet
process prior: alternative to the incremental sampler

Robust prior modelling in Bayesian analyses use of mixtures with k
unknown as a prior model arises in many application contexts, e.g.
measurement error problems, random effects, frailty models.
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Software

WinBugs: The WinBugs system — respected and very widely used
software for Bayesian analysis, and its scope has been recently
extended to support fitting of a wide range of trans-dimensional
models, including variable selection, automatic curve-fitting using
splines, Bayesian MARS and CART, normal mixture analysis, spatial
epidemiology clustering models and variable-order Markov chains.
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Winbugs example: variable selection

REVERSIBLE JUMP GRAPHICAL MODELS 25
model { #1
for (i in 1:n) { #2
Z[i] ~ dnorm(psil[i], tau) #3
3 #4
psill:n] <- jump.lin.pred(X[1:n, 1:Q], k, beta.prec) #5
id <- jump.model.id(psi[1:n]) #6
beta.prec <- tau / lambda #7
tau ~ dgamma(a, b) #8
k ~ dbin(0.5, Q) #9
} #10
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In reality, it’s not that easy...

@ Where does our set of candidate models come from?
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In reality, it’s not that easy...

@ Where does our set of candidate models come from?
We cannot say anything probabilistic about models that are not
even considered.
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In reality, it’s not that easy...

@ Prior model probabilities may be fictional
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In reality, it’s not that easy...

@ Prior model probabilities may be fictional
The ideal Bayesian (or her/his scientist colleague) has real prior
probabilities reflecting scientific judgement/belief across the model
space; not very common in practice!
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In reality, it’s not that easy...

@ Prior model probabilities may be fictional
The ideal Bayesian (or her/his scientist colleague) has real prior
probabilities reflecting scientific judgement/belief across the model
space; not very common in practice!

Arbitrariness in prior model probabilities may not affect Bayes
factors, but it sabotages Bayesian model averaging!
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In reality, it’s not that easy...

@ No chance of passing the test of a sensitivity analysis
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In reality, it’s not that easy...

@ No chance of passing the test of a sensitivity analysis
In ordinary parametric problems we commonly find that inferences
are rather insensitive to moderately large variations in prior
assumptions, except when there are very few data (indeed, the
opposite case, of high sensitivity, poses a challenge to the
non-Bayesian — perhaps the data carry less information than
hoped?).
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In reality, it’s not that easy...

@ No chance of passing the test of a sensitivity analysis
In ordinary parametric problems we commonly find that inferences
are rather insensitive to moderately large variations in prior
assumptions, except when there are very few data (indeed, the
opposite case, of high sensitivity, poses a challenge to the
non-Bayesian — perhaps the data carry less information than
hoped?). But it's clear that a test of sensitivity to model
probabilities will always fail:

pr(klY) _ p(k|Y) (P*(k) : P(k)>
pe(1) "~ p(l)

p(1Y) — p(I]Y)
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In reality, it’s not that easy...

@ Improper parameter priors problems
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Applications

In reality, it’s not that easy...

@ Improper parameter priors problems
In ordinary parametric problems it is commonly true that it is safe
to use improper priors — when posterior distributions are
well-defined as limits based on a sequence of approximating
proper priors (and not usually sensitive to what that sequence is).
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In reality, it’s not that easy...

@ Improper parameter priors problems
In ordinary parametric problems it is commonly true that it is safe
to use improper priors — when posterior distributions are
well-defined as limits based on a sequence of approximating
proper priors (and not usually sensitive to what that sequence is).

But improper parameter priors make Bayes factors indeterminate
(since improper priors can only be defined up to arbitrary
normalising constants, which persist into marginal likelihoods).
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In reality, it’s not that easy...

@ Improper parameter priors problems
In ordinary parametric problems it is commonly true that it is safe
to use improper priors — when posterior distributions are
well-defined as limits based on a sequence of approximating
proper priors (and not usually sensitive to what that sequence is).

But improper parameter priors make Bayes factors indeterminate
(since improper priors can only be defined up to arbitrary
normalising constants, which persist into marginal likelihoods).

And proper but vague/diffuse priors fail to solve the problem, since
the Bayes factors will depend on the arbitrary degree of
vagueness used.
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In reality, it’s not that easy...

@ Improper parameter priors problems, continued
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In reality, it’s not that easy...

@ Improper parameter priors problems, continued

In certain circumstances, ideas such as Intrinsic or Fractional
Bayes factors, or Expected Posterior priors, can be applied,
essentially based on tying together improper priors across
different models. These ideas lose much of the appeal of ideal
Bayes arguments, have arbitrary aspects, and are not widely
accepted.
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Applications

Model uncertainty? Yes, but do we have to choose?

Model uncertainty is a fact of life.

@ When can we quantify it?

@ When can we eliminate it?

@ When can we accommodate it?
Why choose?

@ Prediction

@ Scientific understanding

@ Presentation

@ Policy

@ Defence
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An illusion of unity?

Is ‘model’ too much of a catch-all?
@ different scientific mechanisms
@ selection of predictors in regression
@ number of components in mixture
@ order of AR model
@ complexity of polynomial or spline
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All the other criteria

@ Bayesian hypothesis testing, and ‘alternative-prior carpentry’
@ AIC, BIC, DIC, DIC+, MDL, Cp,

@ Decision theory

@ Bayesian p-values

@ Posterior predictive checks

Peter Green (Bristol/UTS) MCMC and model selection Bogotd, julio de 2013 106 /107



-
Acknowledgements

Thanks to all my collaborators on trans-dimensional MCMC problems:
Carmen Fernandez, Paolo Giudici, Miles Harkness, David Hastie,
Matthew Hodgson, Antonietta Mira, Agostino Nobile, Marco Pievatolo,
Sylvia Richardson, Luisa Scaccia and Claudia Tarantola.

References and preprints available from

http://www.stats.bris.ac.uk/~peter/Research.html
http://www.stats.bris.ac.uk/~peter/papers/HastieGreenR1.pdf,
Statistica Neerlandica, 66, 309-338.
doi:10.1111/j.0039-0402.2011.00516.x
P.J.Green@bristol.ac.uk

©University of Bristol, 2013

Peter Green (Bristol/UTS) MCMC and model selection Bogotd, julio de 2013 107 /107



	Introduction to Bayesian model determination
	MCMC theory and recipes
	MCMC practice
	Other Monte Carlo methods
	Variable-dimension problems and RJMCMC
	Alternatives and relatives
	Applications

