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Introduction to Bayesian model determination

Model selection in a Bayesian setting

One of the attractions of the Bayesian approach to modelling and
inference is that uncertainty in the model (and in truth, there is always
is uncertainty) is naturally dealt with in the same paradigm.

To a Bayesian, uncertainty in
data
parameters
model

may be different things philosophically, but they can all be treated in
the same way mathematically, through probability distributions.
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Introduction to Bayesian model determination

Hierarchical model

A natural set-up consists of
a prior p(k) over models k in a countable set K, and
for each k

a prior distribution p(θk |k), and
a likelihood p(Y |k , θk ) for the data Y .

For definiteness and simplicity, suppose that p(θk |k) is a density in nk
dimensions, and that there are no other parameters, so that where
there are parameters common to all models these are subsumed into
each θk ∈ Rnk .

Additional parameters, perhaps in additional layers of a hierarchy, are
easily dealt with. All probability distributions are proper.
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Introduction to Bayesian model determination

Hierarchical model as DAG

1

k

θ

y

model indicator

model-specific parameter

data

)(kp

)|( kp kθ

),|( kkyp θ

The generic hierarchical model
for model choice

x=h’(x’,u’)

x’=h(x,u)
u

u’

h

h’

Reversible jump

x

u1

u2

x’1

x’2

u’

Dimension matching

'' rdrd +=+

1221 +=+

'' rdrd +=+
x

u

x’1

x’2

Dimension matching

0211 +=+

x

x’=h(x,u)
u

h

Jump diffusion

jσ

jµ

1w

2w

3w

∑
j

jjjNw ),( 2σµ

A mixture model

as a marked
point process

4w

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 5 / 107



Introduction to Bayesian model determination

Note the generality of this basic formulation: it embraces both
genuine model-choice situations, where the variable k indexes the
collection of discrete models under consideration, but also
settings where there is really a single model, but one with a
variable dimension parameter, for example a functional
representation such as a series whose number of terms is not
fixed (in which case, k is unlikely to be of direct inferential interest).

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 6 / 107



Introduction to Bayesian model determination

A simple model choice problem in regression

We have data (xi , yi), i = 1,2, . . . ,n and we entertain two alternative
models, equally probable a priori:

1 k = 1: Yi |xi ∼ N(α + βxi , σ
2)

2 k = 2: Yi |xi ∼ N(γ + δeεxi/(1 + eεxi ), σ2)

Note that one model has 3 parameters, the other 4.

How can we make Bayesian inference about (k , θk ), where
θ1 = (α, β, σ) and θ2 = (γ, δ, ε, σ)?
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Introduction to Bayesian model determination

Splines
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Introduction to Bayesian model determination

Polynomials
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Introduction to Bayesian model determination

Trans-dimensional problems

What if the number of things you don’t know is one of the things you
don’t know?

variable selection
finite mixture estimation
change-point analysis
nonparametric hazard estimation
automatic curve fitting (degree, discontinuities)
ARIMA model fitting
graphical model determination
ion channel data, quantitative trait locus analysis
model-based CART
image segmentation, object recognition
restoring old movies
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Introduction to Bayesian model determination

Recent real non-academic application areas

Applications in Geophysical
sciences
Geophysical inversion
Geophysical source
reconstruction
Geophysical electrical resistivity
Ground flow models
Air pollution, greenhouse gases,
remote sensing
Air pollution, change point models
Climate and land models

Applications in Ecology and
the Environment
Geophysical inversion
Phylogenetics and biodiversity
Animal abundance
Ecology of wildlife
Ecology of salmon
Ecology, conservation,
environment
Remote Sensing land use
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Introduction to Bayesian model determination

Recent real non-academic application areas

Agricultural and Medical
applications
QTLs in agriculture
Protein-DNA interactions and
medical implications
Genetics and disease aetiology
Spatial epidemiology of Chagas
disease
Social and commercial
applications
Health Insurance claim data
Financial modelling
Criminology

Applied image analysis and
computer vision
Computer vision - object tracking
Image and classification using
LiDaR
Imaging of geosynchronous
orbits, managing space debris
Mixture modelling, image analysis
NMR
fMRI
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Introduction to Bayesian model determination

Reporting inference about model and parameter

The joint posterior

p(k , θk |Y ) =
p(k)p(θk |k)p(Y |k , θk )∑

k ′∈K
∫

p(k ′)p(θ′k ′ |k ′)p(Y |k ′, θ′k ′)dθ′k ′

can always be factorised as

p(k , θk |Y ) = p(k |Y )p(θk |k ,Y )

– very often the basis for reporting the inference, and in some of the
methods mentioned below is also the basis for computation.
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Introduction to Bayesian model determination

Bayes factors, Evidence

Perhaps you didn’t think you wanted to report p(k |Y )?
Of course, with these posterior probabilities, we can report Bayes
Factors

Bkl =
p(Y |k)

p(Y |l) =
p(k |Y )

p(l |Y )
÷ p(k)

p(l)

for pairwise comparison of models.

For some, the Evidence (= marginal likelihood) p(Y |k) has an intrinsic
meaning and interpretation.
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Introduction to Bayesian model determination

Bayesian model averaging, prediction

We can do model averaging

E(F |Y ) =
∑

k

∫
F (k , θk )p(k , θk |Y )dθk

for any function F with the same interpretation in each model; the
expectation can be estimated simply by averaging F along the entire
run, essentially ignoring the model indicator k .

As an example, we can do prediction:

p(Y+|Y ) =
∑

k

p(Y+|k ,Y )p(k |Y )

a posterior-weighted mixture of the within-model-k predictions

p(Y+|k ,Y ) =

∫
p(Y+|k , θk )p(θk |k ,Y )dθk

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 15 / 107



Introduction to Bayesian model determination

Bayesian model averaging, prediction

We can do model averaging

E(F |Y ) =
∑

k

∫
F (k , θk )p(k , θk |Y )dθk

for any function F with the same interpretation in each model; the
expectation can be estimated simply by averaging F along the entire
run, essentially ignoring the model indicator k .

As an example, we can do prediction:

p(Y+|Y ) =
∑

k

p(Y+|k ,Y )p(k |Y )

a posterior-weighted mixture of the within-model-k predictions

p(Y+|k ,Y ) =

∫
p(Y+|k , θk )p(θk |k ,Y )dθk

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 15 / 107



Introduction to Bayesian model determination

What do we need to compute?

So, however we wish to report our inference about model selection and
parameter estimation, the computation we need to do is equivalent to
computing the joint posterior p(k , θk |Y ) = p(k |Y )p(θk |k ,Y ).

The only absolutely general methods we know for computing the joint
posterior use simulation, and MCMC is by far the most important of
these in current practice.

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 16 / 107



Introduction to Bayesian model determination

What do we need to compute?

So, however we wish to report our inference about model selection and
parameter estimation, the computation we need to do is equivalent to
computing the joint posterior p(k , θk |Y ) = p(k |Y )p(θk |k ,Y ).

The only absolutely general methods we know for computing the joint
posterior use simulation, and MCMC is by far the most important of
these in current practice.

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 16 / 107



MCMC theory and recipes

What is MCMC?

Monte Carlo = using the Law of Large Numbers (LoLN) to do
calculation.

1
N

N∑
t=1

X (t) → µ

if X (1),X (2), . . . are i.i.d. with E(X (t)) = µ.

Or more generally,
1
N

N∑
t=1

g(X (t))→ µ

if X (1),X (2), . . . are i.i.d. with E(g(X (t))) = µ.
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MCMC theory and recipes

What is MCMC?

Markov chain Monte Carlo = using the LoLN for Markov chains to do
calculation.

1
N

N∑
t=1

g(X (t))→ µ

if X (1),X (2), . . . form an ergodic Markov chain whose invariant
distribution π has E(g(X (t))) =

∫
g(x)π(dx) = µ.
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MCMC theory and recipes

Why is it interesting?

Central to computational Bayesian inference (and computation in
many other fields, e.g. statistical physics, spatial stochastic
processes, etc...) is the need to calculate expectations and
probabilities under complex high-dimensional distributions
It is much easier to construct and simulate a Markov chain with a
specified invariant (‘target’) distribution than an independent
random sample from that distribution
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MCMC theory and recipes

Analysis of Normal random sample

Data Y1,Y2, . . . ,Yn are a random sample from N(µ, σ2).

Independent priors on µ and σ:

µ ∼ N(ξ, κ−1)

σ−2 ∼ Γ(α, β)

(these are only conditionally conjugate).

Joint posterior:

p(µ, σ2|Y ) ∝ (σ2)−α−1−n/2

× exp
{
− β

σ2 −
κ(µ− ξ)2

2
−
∑

(Yi − µ)2

2σ2

}
which is not of standard form.
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MCMC theory and recipes

Analysis of Normal random sample

‘Full conditionals’ are easily found:

µ|σ,Y ∼ N
(
σ−2∑Yi + κξ

σ−2n + κ
,

1
σ−2n + κ

)
σ−2|µ,Y ∼ Γ(α + n/2, β +

∑
(Yi − µ)2/2)

and we can implement the so-called Gibbs sampler by alternately
drawing µ and σ−2 from these distributions.

This defines a Markov chain with states X (t) = (µ(t), σ(t)), whose
transition probabilities depend on Y .
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MCMC theory and recipes

Analysis of Normal random sample

Gibbs sample of
size N = 10.

Posterior sample
of (µ, σ) from data

with n = 10,
Y = 15, s2

Y = 4.
Uninformative

prior.

•

• •

•
••
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• ••

µ
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MCMC theory and recipes

Analysis of Normal random sample

Gibbs sample of
size N = 1000.

Posterior sample
of (µ, σ) from data

with n = 10,
Y = 15, s2

Y = 4.
Uninformative

prior.
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MCMC theory and recipes

Analysis of Normal random sample

We can show that the equilibrium distribution of this chain
X (t) = (µ(t), σ(t)), t = 1,2, . . . is exactly p(µ, σ|Y ), the posterior
distribution of the parameters given the data Y .

And the chain is ergodic, so this is also the limiting distribution of the
chain

(µ(t), σ(t))
d→ p(µ, σ|Y )

(note that the limit is a distribution, not a point).

The law of large numbers applies, and for any function g,

1
N

N∑
t=1

g(µ(t), σ(t))→
∫

g(µ, σ)p(µ, σ|Y )dµdσ
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MCMC theory and recipes
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MCMC theory and recipes

Analysis of Normal random sample

Marginal posterior
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MCMC theory and recipes

Central limit theorem

Under weak conditions, ergodic Markov chains also satisfy a central
limit theorem

√
N
σ

(
1
N

N∑
t=1

g(X (t))− µ
)

d→ N(0, τ)

as N →∞, where σ2 = var(g(X )) under the invariant distribution, and
τ is the integrated autocorrelation time, τ =

∑∞
t=−∞ γt where γt is the

lag-t equilibrium autocorrelation of {g(X (t))}.
Note that unlike conventional numerical quadrature methods, the error
does not scale adversely as the dimension d increases – we always
have the “square root law” (although to be fair, typically τ may increase
with d).
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MCMC theory and recipes

Convergence and efficiency

To evaluate performance of an MCMC method, we need to understand
(and discriminate between) two different things:

1 Convergence: how quickly does X (t) d→ π? (uniform /geometric
ergodicity, bounds on TV norm, etc.)

2 Efficiency: determined by autocorrelation times τ for functionals
g(X ) of interest (which can be estimated empirically to find
MCSE’s).

One MCMC method may dominate another on one criterion and not
the other.
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MCMC theory and recipes

How do you construct a Markov chain for a given
target distribution?

We have a target distribution π on a space Ω, perhaps Rd . We want to
construct and simulate a Markov chain X (1),X (2), . . . that is ergodic
and has invariant distribution π. Suppose the transition matrix is P.

We need two things:
1 π is invariant for P, i.e.

∑
x π(x)P(x , y) = π(y) (in discrete

distribution notation)
2 P is irreducible
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target distribution?

We have a target distribution π on a space Ω, perhaps Rd . We want to
construct and simulate a Markov chain X (1),X (2), . . . that is ergodic
and has invariant distribution π. Suppose the transition kernel is P,
P(x ,A) = P(X (t+1) ∈ A|X (t) = x).

We need two things:
1 π is invariant for P, i.e.

∫
π(dx)P(x ,A) = π(A) (in general

measure-theoretic notation)
2 P is irreducible
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MCMC theory and recipes

Detailed balance and reversibility

In practice, rather than check invariance, we usually look for detailed
balance, which is stronger but easier to check:
π(x)P(x , y) = π(y)P(y , x) for all x , y , or
π(dx)P(x ,dy) = π(dy)P(y ,dx) for all x , y .

If this holds, the chain is reversible. Most, but not quite all, Markov
chains of use in MCMC are reversible, or are built from reversible
pieces.
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MCMC theory and recipes

Myths about MCMC 1

We need aperiodicity – we don’t, since we do not need convergence in
distribution of g(X (t)), only of the ergodic averages N−1∑N

t=1 g(X (t)) .
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MCMC theory and recipes

Metropolis-Hastings

We will explain this in a discrete distribution notation: π(x) is target
distribution; P(x , y) is the transition ‘matrix’.

When current state is X (t) = x :
1 Propose a new state x ′, drawn from distribution Q(x , x ′)
2 With probability α(x , x ′), given by

α(x , x ′) = min
{

1,
π(x ′)Q(x ′, x)

π(x)Q(x , x ′)

}
set new state X (t+1) = x ′, otherwise stay where you are:
X (t+1) = x

For x ′ 6= x , P(x , x ′) = Q(x , x ′)α(x , x ′);
P(x , x) = Q(x , x) +

∑
x ′ 6=x Q(x , x ′)(1− α(x , x ′)).
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MCMC theory and recipes

Metropolis-Hastings: proof of detailed balance

We have to show that π(x)P(x , x ′) = π(x ′)P(x ′, x); for x = x ′ there is
nothing to prove.

For x 6= x ′,

π(x)P(x , x ′) = π(x)Q(x , x ′)α(x , x ′)

= π(x)Q(x , x ′) min
{

1,
π(x ′)Q(x ′, x)

π(x)Q(x , x ′)

}
= min{π(x ′)Q(x ′, x), π(x)Q(x , x ′)}

but this is symmetric in x and x ′ so we are done.
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MCMC theory and recipes

Multiple moves, schedules, irreducibility

In practice, it is useful to have not one type of transition or ‘move’ but
several, so we have a ‘dictionary’ of transition matrices {Pm(x , x ′)} all
in detailed balance with respect to π(x), e.g. MH matrices for different
proposals Qm. These can be combined in many ways to yield an
overall transition matrix P(x , x ′), e.g.

Deterministically, e.g. P = P1P2 . . .PM

Randomly, e.g. P = M−1∑
m Pm

Palindromically: P = P1P2 . . .PMPMPM−1 . . .P1

In all these cases, and others, π remains an invariant distribution, but
detailed balance may be lost.

We seek a combination so that P is irreducible (even if individual Pm
are not), and with good performance (see later).
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MCMC theory and recipes

Important special cases of Metropolis-Hastings

Metropolis: Q(x , x ′) = Q(x ′, x)

Random walk Metropolis: Q(x , x ′) = q(x ′ − x)

Independence MH: Q(x , x ′) = q(x ′)∀ x
Gibbs: Qm(x , x ′) = π(x ′m|x−m) I[x ′i = xi , i 6= m] (the conditional
distribution of xm holding other components fixed)

Note that the last of these is the only one referring at all to the target –
for the others, the target is only used to calculate the acceptance
probability, not in random number generation.
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MCMC theory and recipes

Myths about MCMC 2

Gibbs is the method of choice, we only use anything else if the full
conditionals π(x ′m|x−m) are not easy to sample from – there are no
general reasons why Gibbs is best, and often it is very bad; the only
clear advantage is that you have fewer choices to make.
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MCMC practice

Why has MCMC been such a tremendous boon to
Bayesian statistics?

Algorithm generated by assumed model
Modularity
Product structure facilitates calculation of π(x ′)/π(x) ratios, used
in

α(x , x ′) = min
{

1,
π(x ′)Q(x ′, x)

π(x)Q(x , x ′)

}

We only need know π up to a normalising constant
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MCMC practice

Myths about MCMC 3

We should sub-sample (or thin) the MCMC sample X (1),X (2), . . . in
order to reduce/eliminate autocorrelation among {g(X (t))} – we
shouldn’t, subsampling the sequence increases the asymptotic
variance of the ergodic average
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MCMC practice

Myths about MCMC 4

Careful use of MCMC diagnostics gives you reassurance that your
chain has converged and that you are successfully sampling the target
distribution – nothing in the past history of the process can tell you that
it will not jump to a new part of the sample space in the future
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MCMC practice

Some strengths of sample-based Bayesian
computation using algorithms generated by the model

Freedom in modelling
in principle, no limits
well-adapted for models defined on sparse graphs

Freedom in inference
in principle, no limits
can address questions only posed after simulation completed (e.g.
ranking and selection)
opportunities for simultaneous inference

Allows/encourages sensitivity analysis
Model comparison/criticism/choice
Coherently integrates uncertainty
Only available method for complex problems
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MCMC practice

Some weaknesses and dangers

Order
√

N precision
Possibility of slow convergence, especially when not diagnosable
(meta-stability)
Risk that fitting technology runs ahead of statistical science
Risk of undisciplined, selective presentation
Difficulty of validating code
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Other Monte Carlo methods

Adaptive MCMC

Except in small/easy problems, the choice of proposal distribution
Q(x , x ′) is crucial in designing Metropolis-Hastings methods that
perform well enough.

An intuitive approach would be to adjust Q(x , x ′) at time t based on the
history X (1),X (2), . . . ,X (t) – but if we did that, (X (t)) would not be a
Markov chain! Then the straightforward limit theory no longer applies.

We can legitimately:
Perform pilot runs – experiment until performance acceptable,
then run again to collect samples
Only start collecting samples after adjustment ceases
Prove new ergodic theorems!
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Other Monte Carlo methods

Coupling from the past (CFTP)

Here is a beautiful idea due to Propp and Wilson (1995): a way of
organising a Markov chain simulation so that after a finite but random
amount of work, it exactly delivers a sample from the target distribution!

For example, look
at this partial

simulation of a
symmetric random

walk with
reflecting barriers:

Time

S
ta

te

-15 -10 -5 0

1
2

3
4

5

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 43 / 107



Other Monte Carlo methods

ABC – approximate Bayesian computation

In some complex statistical models (e.g. in population genetics, spatial
statistics, . . . ), not only is the posterior/target distribution π(x) only
known up to an unknown normalising constant, it cannot be evaluated
tractably at all.

ABC methods provide a way to conduct MCMC-like sampling providing
you can simulate data from the assumed model for any parameter
value.
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Other Monte Carlo methods

Sequential Monte Carlo

a.k.a. particle filtering.

Dynamic models (time series, stochastic volatility models, state-space
models, hidden Markov chains, . . . ) form a huge class of statistical
models for which computational inference is needed – but the
interaction between the real time scale of the process and the artificial
time scale of the MCMC simulation poses problems.

These are being effectively addressed by particle filter methods – not
MCMC but iterative importance-sampling.

Tricks have been devised to deal with ‘static’ parameters, and there are
now reliable SMC approaches even for non-dynamic Bayesian
problems.
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Variable-dimension problems and RJMCMC

Trans-dimensional problems

Most ‘trans-
dimensional’

problems can be
set up as

hierarchical
models

1

k

θ

y
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Variable-dimension problems and RJMCMC

Trans-dimensional statistical inference: a simple
example

We have data (xi , yi), i = 1,2, . . . ,n and we entertain two alternative
models, equally probable a priori:

1 k = 1: Yi |xi ∼ N(α + βxi , σ
2)

2 k = 2: Yi |xi ∼ N(γ + δeεxi/(1 + eεxi ), σ2)

Note that one model has 3 parameters, the other 4.

How can we make Bayesian inference about (k , θk ), where
θ1 = (α, β, σ) and θ2 = (γ, δ, ε, σ), using MCMC?
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Variable-dimension problems and RJMCMC

Splines
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Variable-dimension problems and RJMCMC

Across- and within-model simulation

How to compute p(k , θk |Y )?

Two main approaches using MCMC:
across: one MCMC simulation with states of the form
(k , θk ) ≈ p(k , θk |Y )

within: separate simulations of θk ≈ p(θk |k ,Y ) for each k .
and beyond straight MCMC:

particle filter: SMC in place of MCMC
ABC: ‘likelihood-free’ methods where Y |k , θk can be simulated but
p(Y |k , θk ) cannot be evaluated.
nested sampling
variational methods
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Variable-dimension problems and RJMCMC

Across-model simulation: Reversible jump MCMC

The across-model MCMC simulator follows the ideal Bayesian, and
treats (k , θk ) as a single unknown. The state space for an
across-model simulation is {(k , θk )} =

⋃
k∈K({k} ×Rnk ).

Mathematically, this is not a particularly awkward object. But at least a
little non-standard, when nk varies with k .

We use Metropolis-Hastings to build a suitable reversible chain.

On the face of it, this requires measure-theoretic notation, which may
be unwelcome! The point of the ‘reversible jump’ framework is to
render the measure theory invisible, by means of a construction using
only ordinary densities. Even the fact that we are jumping dimensions
becomes essentially invisible.

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 50 / 107



Variable-dimension problems and RJMCMC

Across-model simulation: Reversible jump MCMC

The across-model MCMC simulator follows the ideal Bayesian, and
treats (k , θk ) as a single unknown. The state space for an
across-model simulation is {(k , θk )} =

⋃
k∈K({k} ×Rnk ).

Mathematically, this is not a particularly awkward object. But at least a
little non-standard, when nk varies with k .

We use Metropolis-Hastings to build a suitable reversible chain.

On the face of it, this requires measure-theoretic notation, which may
be unwelcome! The point of the ‘reversible jump’ framework is to
render the measure theory invisible, by means of a construction using
only ordinary densities. Even the fact that we are jumping dimensions
becomes essentially invisible.

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 50 / 107



Variable-dimension problems and RJMCMC

Metropolis-Hastings

We will explain this first in a discrete distribution notation: π(x) is target
distribution; P(x , y) is the transition ‘matrix’.

When current state is X (t) = x :
1 Propose a new state x ′, drawn from distribution Q(x , x ′)
2 With probability α(x , x ′), given by

α(x , x ′) = min
{

1,
π(x ′)Q(x ′, x)

π(x)Q(x , x ′)

}
set new state X (t+1) = x ′, otherwise stay where you are:
X (t+1) = x

For x ′ 6= x , P(x , x ′) = Q(x , x ′)α(x , x ′);
P(x , x) = Q(x , x) +

∑
x ′ 6=x Q(x , x ′)(1− α(x , x ′)).
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Variable-dimension problems and RJMCMC

Metropolis-Hastings on general state spaces

π is target distribution; P(x ,B) is the transition kernel.

When current state is X (t) = x :
1 Choose move type m with probability cm(x)

2 Propose a new state x ′, drawn from distribution Qm(x ,dx ′)
3 With probability αm(x , x ′), given by

αm(x , x ′) = min
{

1,
π(dx ′)cm(x ′)Qm(x ′,dx)

π(dx)cm(x)Qm(x ,dx ′)

}
(formally, this is a Radon-Nikodym derivative) set new state
X (t+1) = x ′, otherwise stay where you are: X (t+1) = x

For B 63 x , P(x ,B) =
∫

x ′∈B
∑

m cm(x)Qm(x ,dx ′)αm(x , x ′)dx ′.
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Variable-dimension problems and RJMCMC

Metropolis-Hastings: proof of detailed balance

We have to show that
∫

x∈A π(dx)P(x ,B) =
∫

x ′∈B π(dx)P(x ′,A) for all
A,B.

The LHS is the integral over A× B of

π(dx)P(x ,dx ′) = π(dx)
∑

m

cm(x)Qm(x ,dx ′)αm(x , x ′)

(assuming A ∩ B = ∅) and the choice of αm(x , x ′) ensures that this is
symmetric in x and x ′.
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Variable-dimension problems and RJMCMC

Reversible jump MCMC

But we shouldn’t need to use (or even know) measure theory to do
numerical simulation!

A solution is to ‘model the program’. How do we simulate any Markov
chain? Given the current state X (t),

1 Generate some (uniform) random numbers u
2 Calculate the new state as a deterministic function of the old state

and the random numbers: X (t+1) = h(X (t),u)

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 54 / 107



Variable-dimension problems and RJMCMC

Reversible jump MCMC

Reversible jump
MCMC is a
Metropolis-

Hastings method,
employing

on-the-fly auxiliary
random variables

to make difficult
jumps between

values of
x = (k , θ) in

different spaces
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The total
dimensions of

state and auxiliary
variables must be

preserved

1

k

θ

y

model indicator

model-specific parameter

data

)(kp

)|( kp kθ

),|( kkyp θ

The generic hierarchical model
for model choice

x=h’(x’,u’)

x’=h(x,u)
u

u’

h

h’

Reversible jump

x

u1

u2

x’1

x’2

u’

Dimension matching

'' rdrd +=+

1221 +=+

'' rdrd +=+
x

u

x’1

x’2

Dimension matching

0211 +=+

x

x’=h(x,u)
u

h

Jump diffusion

jσ

jµ

1w

2w

3w

∑
j

jjjNw ),( 2σµ

A mixture model

as a marked
point process

4w

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 57 / 107



Variable-dimension problems and RJMCMC

Reversible jump MCMC

The acceptance probability can then be calculated explicitly:

αm(x , x ′) = min
{

1,
π(dx ′)cm(x ′)Qm(x ′,dx)

π(dx)cm(x)Qm(x ,dx ′)

}
= min

{
1,
π(x ′)cm(x ′)gm(u′)
π(x)cm(x)gm(u)

∣∣∣∣∂(x ′,u′)
∂(x ,u)

∣∣∣∣}
using ordinary densities.
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Variable-dimension problems and RJMCMC

Toy example

..... of no statistical use at all!
Suppose x lies in R∪R2: π(x) is a mixture:
with probability p1 = 0.4, x ∼ fB = Beta(2,3),
with probability p2 = 0.6, (x1, x2,1− x1 − x2) ∼ fD = Dirichlet(2,3,4).

I will use three moves:
(1) within R: x → U(x − ε, x + ε).
(2) within R2: (x1, x2)→ (x2, x1).
(3) between R and R2

In R, choose (1) or (3) with probabilities 1− r1, r1 = 0.7.
In R2, choose (2) or (3) with probabilities 1− r2, r2 = 0.4.
Thus c3(x) = r1 for all x ∈ R and c3(x ′) = c2 for all x ′ ∈ R2.
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Variable-dimension problems and RJMCMC

Dimension-changing with move (3)

Proposal:
To go from x ∈ R to (x1, x2) ∈ R2, draw u from U(0,1) [so g3(u) = 1 if
0 < u < 1] and propose (x1, x2) = (x ,u). For reverse move, no u′

required [write g′3(u′) ≡ 1] and set x = x1. This certainly gives a
bijection: (x ,u)↔ (x1, x2), with Jacobian = 1.
Acceptance decision:

α = min
{

1,
π(x ′)
π(x)

c3(x ′)
c3(x)

g′3(u′)
g3(u)

∣∣∣∣∂(x ′,u′)
∂(x ,u)

∣∣∣∣}
= min

{
1,

p2fD(x ,u)

p1fB(x)

r2

r1

1
1
|1|
}

= min
{

1,
p2r2fD(x ,u)

p1r1fB(x)

}

For reverse move, α = min{1, (p1r1fB(x))/(p2r2fD(x ,u))}.
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Variable-dimension problems and RJMCMC

Toy example
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Variable-dimension problems and RJMCMC

Toy example
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Variable-dimension problems and RJMCMC
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Variable-dimension problems and RJMCMC

Toy example
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Variable-dimension problems and RJMCMC

Toy example
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Alternatives and relatives

Alternatives to joint model-parameter sampling

When marginal likelihoods p(Y |k) =
∫

p(Y |k , θk )p(θk |k)dθk are
tractable, it’s usually a good idea to compute them (thus
marginalising over θk ) then conduct search/sampling only over the
model indicator k .
Marginal likelihoods via within-model sampling.
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Alternatives and relatives

Within-model sampling

It is possible to use a run of a MCMC sampler for the within-model
posterior p(θk |Y , k) to estimate the marginal likelihoods p(Y |k),
separately, for each model k .

Then these marginal likelihoods can be combined to compute Bayes
factors

Bkl =
p(Y |k)

p(Y |l)
and hence joint model-parameter posteriors

p(k , θk |Y ) = p(k |Y )p(θk |k ,Y ) =
Bklp(k)∑

k ′ Bk ′lp(k ′)
p(θk |k ,Y )

Estimating marginal likelihoods by MCMC is a subtle matter, and the
subject of much ongoing research.
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Alternatives and relatives

Some issues in choosing a sampler

How many models are there?
Do we want results across k , within each k , or for one k of
interest?
Do we need the Evidence (marginal likelihood) values p(Y |k)
absolutely, or only relatively?
Jumping between models as an aid to mixing (c.f. simulated
tempering: mixing may be better in the ‘other’ model)
Are samplers for individual models already written and tested?
Are standard strategies like split/merge likely to work?
Trade-off between remembering and forgetting θk when leaving
model k
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Alternatives and relatives

The different ways that models can interconnect

completely unrelated
nested in some irregular way
mixture models (nesting and exchangeability)
variable selection (factorial structure)
graphical models (possibly with constraints such as
decomposability)
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Alternatives and relatives

Methodological connections and extensions

Jump–diffusion (Grenander & Miller, 1994, Phillips & Smith, 1996)
Point process representations and samplers (Geyer & Møller,
1994, Stephens, 2000)
Product-space samplers (Carlin & Chib, 1995, Green & O’Hagan,
1998, Dellaportas et al., 2002)
Delayed rejection (Green & Mira, 2001)
Connections between reversible jump and continuous time
birth-and-death samplers (Cappé, Robert & Rydén, 2001)
Composite model space framework (Godsill, 2001)
Efficient construction of proposals (Brooks, Giudici & Roberts,
2003)
Automatic RJ sampler (Hastie, 2005)
Population RJMCMC and Interacting SMC (Jasra et al, 2007/8)
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Applications

Cyclones hitting the Bay of Bengal

141 cyclones over
a period of 100

years
(a cyclone is a

storm with winds
> 88 km h−1)

time
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Applications

Cyclones hitting the Bay of Bengal

We model this
point process as

an
inhomogeneous

Poisson process,
whose intensity is

a step function
with an unknown
number of steps;

the dimension-
changing move

requites splitting
and merging steps

hj+

h

hj-

w-

w+

s*
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Applications

Cyclones hitting the Bay of Bengal

Sample from the
posterior over step

functions.
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Figure �� Posterior sample of step functions x�t
 for model � with k � �� and

posterior for k in model �� applied to cyclones data�

A variable�dimension Metropolis�Hastings algorithm was applied to this problem� setting the
hyperparameter � � �� and one aspect of the resulting analysis is displayed in Figure ��
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R�ESUM�E
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Applications

Cyclones hitting the Bay of Bengal

Posterior for the
number of change

points k : zero
change points is

ruled out; k = 1 or
2 more probable

than under the
prior.
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Applications

Cyclones hitting the Bay of Bengal

Posterior density
estimates for
change-point

positions
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Applications

Cyclones hitting the Bay of Bengal

Model-averaged
estimate: posterior

expectation of
intensity (the

expectation of a
random step

function is not a
step function!).
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Applications

CNV data

Log R ratio trace
reflects variation
in copy number
along the
genome: data
from Chris Yau,
with thanks.
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Applications

Dow Jones data
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Applications

Graphical models

The conditional independence graph G of a multivariate distribution
(for a random vector X , say) tells us much about the structure of the
distribution. G = (V ,E) where the vertices V index the components of
X , and there is an (undirected) edge between vertices i and j , written
i ∼ j

unless Xi ⊥⊥ Xj | XV\{i,j}
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Applications

Bayesian graphical model determination

Given n i.i.d. samples X = (X1,X2, . . . ,Xn) from a multivariate
distribution on Rv parameterised by the graph G and parameters θ, a
typical formulation takes the form

p(G, θ,X) = p(G)p(θ|G)p(X|G, θ)

and we perform joint structural/quantitative learning by computing the
posterior p(G, θ|X) ∝ p(G, θ,X).
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Applications

Graphical models

Frets’ head data:
posterior probability on graphs (for highest probability graphs).
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Applications

Graphical models

Frets’ head data:
(model-averaged)

marginal
posteriors on

partial
correlations.
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Applications

Linkage Disequilibrium (p = 500, n = 60)
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Applications

Bayesian models for mixtures – context 1

yi ∼
k∑

j=1

wj f (·|θj) independently for i = 1,2, . . . ,n

f (·|θ) is a given parametric family
{yi} observed
{θj}, {wj}, k unknown

Heterogeneous population: Groups j = 1,2, . . . , k , sizes ∝ wj .
Observation yi drawn from unknown group zi : latent allocation variable.

p(zi = j) = wj independently for i = 1,2, . . . ,n

yi |z ∼ f (·|θzi ) independently for i = 1,2, . . . ,n
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Applications

Bayesian models for mixtures – context 2

yi ∼
k∑

j=1

wj f (·|θj) independently for i = 1,2, . . . ,n

f (·|θ) is a given parametric family
{yi} observed
{θj}, {wj}, k unknown

Semi-parametric density estimation: (not prime focus here) use same
representation, but {zi} now artificial.
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Applications

Hierarchical model

p(k , θ,w , z, y) = p(k)p(θ|k)p(w |k)p(z|w , k)p(y |θ, z)

y

z

w

k

θ

For flexibility, allow priors for k , θ and w to depend on
hyperparameters, drawn from independent hyperpriors.
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Applications

Application of reversible jump MCMC to mixtures

We use two dimension-changing moves:
splitting/combining components
birth/death of empty components

(the former is essential, the latter is introduced simply to improve
mixing in some rather extreme cases)
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Applications

Split/combine move, for univariate normal mixtures

Propose to split a randomly chosen component (k → k + 1) or
combine two adjacent randomly chosen components (k → k − 1), and
reallocate affected observations.

(k ,w , µ, σ, z)→ (k ± 1,w ′, µ′, σ′, z ′)

Propose a parameter set in the new subspace that is intuitively roughly
as well supported by the posterior as the old set. We preserve
combined weight, mean and variance:

wj∗ = wj1 + wj2

wj∗µj∗ = wj1µj1 + wj2µj2

wj∗(µ
2
j∗ + σ2

j∗) = wj1(µ2
j1 + σ2

j1) + wj2(µ2
j2 + σ2

j2)
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Applications

Illustration of split/combine proposal

+o++ + o+ o+ + • ••• • •• •• •
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Applications

Acceptance probability for split move

For the split move the probability is min(1,A), where A is

(likelihood ratio)× p(k + 1)

p(k)
× (k + 1)

×
wδ−1+l1

j1
wδ−1+l2

j2

wδ−1+l1+l2
j∗ B(δ, kδ)

×
√

κ

2π

× exp
[
−1

2
κ{(µj1 − ξ)2 + (µj2 − ξ)2 − (µj∗ − ξ)2}

]

× βα

Γ(α)

(
σ2

j1
σ2

j2

σ2
j∗

)−α−1

exp
(
−β(σ−2

j1
+ σ−2

j2
− σ−2

j∗ )
)

× dk+1

bkPalloc
× {g2,2(u1)g2,2(u2)g1,1(u3)}−1

×
wj∗ |µj1 − µj2 |σ2

j1
σ2

j2

u2(1− u2
2)u3(1− u3)σ2

j∗
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Applications

Posterior distribution of k

RICHARDSON AND GREEN [No. 4, 

Fig. 6. Posterior distributions of k: comparison of sensitivity to hyperparameters between fixed and 
random p models: (a) fixed P, a = 2 and +/@/a)varying between R/5 (-), R/10 (..........) and R/20 
(- - - -); (b) random p, a = 2, g = 0.2 and &/ha) varying between R/5 (-), R/10 (........-) and 
R/20 (- - - -) 

implemented, which allows weak information on ajto be put in at a higher level, does 
not exhibit the same behaviour. The posterior distribution of k is quite insensitive 
over a wide range of values of the ratio g/h (related again to the range R) which all 
lead to a similar posterior mean and standard deviation for P. This is well illustrated 
in Fig. 6(b) which shows strikingly similar posterior distributions for k for three sets 
of values for a ,  g and h chosen so that the prior order of magnitude for aj at the 
higher level, J(g/ha), ranges again from R/5 to R/20. Hence our hierarchical for- 
mulation for the variance distribution in the mixture model allows a high degree 
of non-informativeness. It is in view of these results that we choose the hierarchical 
random p model with a =2, g = 0.2 and J(g/ha) = R/10 as our default option. 

5.1.2. Sensitivity to prior distribution of means 
An important component of the mixture model is the prior model for the means p,, 

which we defined as drawn independently from the normal distribution N(J,  n-I). 
Using only the extremes of the data we consider that setting 6 equal to the mid- 
range and the precision n so that n-lh is equal to R is a sensible weakly informative 
prior which places effectively no constraint on the location of the pi but does not 
encourage the fitting of mixtures with very close p,. 

There is a subtle interplay between prior information on the location of the means 
and the number of components. Indeed reducing n-'I2 at first will tend to favour a 
higher number of components. This can be interpreted as the result of defining a 
prior for the means which is increasingly more permissive of components with close 
means. However, as n-'I2 is further reduced, the number of components will start to 
decrease, as there is now a shrinkage effect and active prohibition of components 
with means located towards the extremes of the range. We illustrate these points on 
the acidity data. We have used throughout the same hierarchical default option for 
the variances, but a Poisson prior P(10) for k as some hyperparameter settings now 
encourage large k. As the values of n-'I2 decrease from R to R/10, the number of 
components with the highest posterior probability first increases to reach a peak 
value of k = 10 for ti-'I2 between R/4 and R/5 and then decreases again (Table 2). 

We have so far discussed sensitivity to the prior setting of K, with the hierarchical 
random p model for the component variances, but the same behaviour is observed 
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Applications

Sample from the posterior distribution of the mixture
density

Each sweep:

(k ,w , θ) −→ f (·|k ,w , θ) =
k∑

j=1

wj f (·|θj)

For Galaxy data:

744 RICHARDSON AND GREEN [No. 4, 

deviances 
(a) 

10 20 30 40 
data 

(b) 

Fig. 3. (a) Posterior distributions of deviances for the enzyme data (-, k = 2; .........., k = 3 ;  
- - - -,k = 4; ----, k = 5 ;  --, k = 6); (b) sample from the posterior distribution of f ( . lk ,  w ,  8) for 
the galaxy data 

can be computed. Posterior variation among the realized f(.lk, w, 9) is displayed in 
Fig. 3(b), for the galaxy data. 

Averaging the f(.lk, w, 8) across the MCMC run, conditionally on fixed values of 
k ,  gives an estimate of E{f(.lk, w, 9)lk, y } ,  a Bayesian predictive density estimate of 
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Applications

Predictive densities from three data sets

742 RICHARDSON A N D  G R E E N  Wo. 4, 

including Escobar and West (1995) and Phillips and Smith (1996). It consists of the 
velocities of 82 distant galaxies, diverging from our own galaxy. Histograms of the 
three data sets are shown in Fig. 2. 

The three data sets have been analysed with the hierarchical normal random P 
mixture model defined in Sections 2.3 and 2.4, with the following settings for 
previously unspecified constants: K - 1/R2, cr = 2, g = 0.2, h = 10/R2 and S = 1. 
The prior on k is taken as uniform on the integers 1,2, . . ., k,,, = 30, for which it is 
particularly easy to convert results to those corresponding to other priors on these 
values, using the identity 

where p*(.ly) denotes the posterior for an alternative prior p*. 
For each of the three data sets, we report results corresponding to 100000 sweeps, 

following a burn-in period also of 100000 sweeps. We believe that these numbers 

10 15 20 25 30 35 
(C) 


Fig. 2. Predictive densities for (a) the enzyme, (b) the acidity and (c) the galaxy data sets, 
unconditionally (-------) and conditionally (-- --) on various values of k: the curves displayed are for 
k - 2 4 , except for the galaxy data, where they are for k = 3-6; in each case note that it is only the 
srr~allestk shown that gives an appreciably different estimate 
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Applications

MCMC performance. Jump moves

750 RICHARDSON AND GREEN [No. 4, 

6. PERFORMANCE OF MARKOV CHAIN MONTE CARL0 SAMPLER 

6.1. Mixing over k: Performance of Jump Moves 
An essential element of the performance of our MCMC sampler is its ability to 

move between different values of k. A plot of the changes in k against the number of 
sweeps for the galaxy data is presented in Fig. 7 . It shows that the MCMC algorithm 
mixes well over k,  excursions into very high values being short lived. Similar plots 
were obtained for the other data sets. Proportions of accepted 'split or combine' 
moves vary between 8% and 14% (Table 1 ) .  For dimension-changing moves, these 
proportions are satisfactory and show that our proposal based on adjacency is 
sensible. A useful check on the stationarity is given by the plot of the cumulative 
occupancy fractions for different values of k against the number of sweeps. These are 
represented in Fig. 7 for the three data sets, where it can be seen that the burn-in is 
more than adequate to achieve stability in the occupancy fractions. 

Our model does not preclude empty components, and they will be included in our 
count of k .  This might cause concern if a high number of them persisted for long 
times. We have found that including in our algorithm the birth-death moves, which 
specifically deal with empty components, improves convergence in comparison with 
that of an algorithm relying only on the split or combine moves, especially when the 
posteriors are diffuse. The acceptance rate for birth-and-death moves is highest for 
the small and multimodal galaxy data set. The mean number of empty components is 
equal to 0.10, 0.18 and 0.57 for the enzyme, acidity and galaxy data sets respectively. 

We detected no influence of starting values on the distribution of k .  For example, 
with the enzyme data, starting with k = 1 typically leads to the acceptance of the first 

sweep sweep 
(a) (b) 

sweep sweep 
(C) (d) 

Fig. 7. (a) Example of a trace of k for the galaxy data set, for 50000 sweeps after bum-in, and 
cumulative occupancy fractions for (b) the galaxy, (c) the enzyme and (d) the acidity data sets, for a 
complete run including bum-in 
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Applications

MCMC performance. Parameter moves
752 RICHARDSON AND GREEN [No. 4, 

0 5OM) 1 m  1 5M)O MWO 2 m  
sweep 

0 SOM) lW00 1 m  2W00 25000 
sweep 

0 5WO IWM) 15000 2W00 25WO 
sweep 

Fig. 8. Traces of parameter estimates against visits to k = 3, enzyme data 

by the possibility of varying k. In the particular situation described above, the 
sampler could, at some stage, combine the two components in the first cluster and 
subsequently split the component in the second cluster, and so complete a transition 
from one mode to the other, without visiting regions of low posterior probability. 
This is an example of what physicists would call 'tunnelling' between regions of low 
'energy' (energy is the negative logarithm of the probability). 

Here we present an example of the improved mixing obtained by varying k. The 
example is somewhat contrived, but we believe that it is qualitatively similar to real 
problems with clustered data, in the absence of strong prior information. We take 50 
observations from N(2.5, I), 50 from N(4, 1) and assemble a synthetic data set of size 
200 by taking these 100 data points and their reflections about the origin. Our default 
prior is used, except that k is given a Poisson prior, with X = 4. We thus contrive a 
situation in which the joint posterior distribution has exact symmetry on reflection 
about 0. We compare results of simulating the joint posterior with variable k, and 
then conditioning on k = 3, with running a fixed k sampler for k = 3 using only 
moves (a t (d)  of Section 3.2. Run lengths were arranged so that the same numbers of 
visits to k = 3 were made in each case. Some results are displayed in Fig. 9. By 
symmetry, the true posterior p(p21y, k = 3) is symmetric about 0, and in particular 
p(p2 < OIy, k = 3) = 0.5. Figs 9(a) and 9(c) show traces of p2 against sweep number. 
The variable k sampler evidently mixes far better than the fixed k sampler. This 
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Applications

Effective mixing within k

no trapping states
multimodality explored satisfactorily
−→ better mixing than a fixed-k sampler in case where posterior
has several well separated modes
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Applications

Extensions

Other univariate distributions
discrete distributions
2 parameter density suitably reparametrised
adding an overall shape parameter to model mixtures of skewed
distributions

Other mixture models
modelling the weights or allocations (genetic, spatial
applications...)
adapting the algorithm to mixture models based on a Dirichlet
process prior: alternative to the incremental sampler

Robust prior modelling in Bayesian analyses use of mixtures with k
unknown as a prior model arises in many application contexts, e.g.
measurement error problems, random effects, frailty models.

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 96 / 107



Applications

Software

WinBugs: The WinBugs system – respected and very widely used
software for Bayesian analysis, and its scope has been recently
extended to support fitting of a wide range of trans-dimensional
models, including variable selection, automatic curve-fitting using
splines, Bayesian MARS and CART, normal mixture analysis, spatial
epidemiology clustering models and variable-order Markov chains.
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Applications

Winbugs example: variable selection

REVERSIBLE JUMP GRAPHICAL MODELS 25

model { #1

for (i in 1:n) { #2

Z[i] ~ dnorm(psi[i], tau) #3

} #4

psi[1:n] <- jump.lin.pred(X[1:n, 1:Q], k, beta.prec) #5

id <- jump.model.id(psi[1:n]) #6

beta.prec <- tau / lambda #7

tau ~ dgamma(a, b) #8

k ~ dbin(0.5, Q) #9

} #10

Line #5: jump.lin.pred(.) is the BUGS-language name for the generic linear
predictor to be used for standard variable selection problems. It is a
function of: (i) the full covariate matrix X[.,.], which contains n ob-
servations on each of Q variables; (ii) the number of currently selected
covariates k (the dimension of the trans-dimensional sub-model); and
(iii) beta.prec, the prior precision to be assigned to all elements of
β. The existence of β and θ (and dβ) is implied by the specification of
a jump.lin.pred(.) vector; graphical nodes to represent these vari-
ables are constructed internally but are not (directly) visible to the
user.

Line #6: For all trans-dimensional models in which θ represents a ‘discrete se-
lection’, the jump.model.id(.) function converts θ into a sequence
of 20-bit integers (∈ {0, 1, 2, ..., 220 − 1}) for efficient storage (as dis-
cussed in Section 4.1). The length of this sequence is given by dQ/20e,
where Q is the total number of selectable entities and dxe denotes the
“ceiling” function – the smallest integer not less than x. For this ex-
ample, Q = 4 and so only one scalar variable (id) is required to store
the model configuration. The function ψ is passed as an argument to
jump.model.id(.) instead of the more natural argument θ because
the latter is inaccessible to the user.

Lines #7 & #8: The values of lambda, a and b are specified in a separate ‘data file’
that it is loaded into the software after the model has been ‘declared’.
For this example, a range of different values for lambda are specified,
as discussed below, along with a = b = 0.001.

In Table 1 we present point estimates for the four highest posterior model
probabilities from each of four analyses conducted in WinBUGS. The first
three analyses are characterized by choices of λ = 100, λ = 1000, and
λ = 10000, whereas in the fourth analysis we set λ = 10000τ , such that
the prior precision for β becomes 10000, which is independent of τ . For the
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Applications

In reality, it’s not that easy...

Where does our set of candidate models come from?
We cannot say anything probabilistic about models that are not
even considered.
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Applications

In reality, it’s not that easy...

Prior model probabilities may be fictional
The ideal Bayesian (or her/his scientist colleague) has real prior
probabilities reflecting scientific judgement/belief across the model
space; not very common in practice!

Arbitrariness in prior model probabilities may not affect Bayes
factors, but it sabotages Bayesian model averaging!
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Applications

In reality, it’s not that easy...

No chance of passing the test of a sensitivity analysis
In ordinary parametric problems we commonly find that inferences
are rather insensitive to moderately large variations in prior
assumptions, except when there are very few data (indeed, the
opposite case, of high sensitivity, poses a challenge to the
non-Bayesian – perhaps the data carry less information than
hoped?). But it’s clear that a test of sensitivity to model
probabilities will always fail:

p?(k |Y )

p?(l |Y )
=

p(k |Y )

p(l |Y )
×
(

p?(k)

p?(l)
÷ p(k)

p(l)

)

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 101 / 107



Applications

In reality, it’s not that easy...

No chance of passing the test of a sensitivity analysis
In ordinary parametric problems we commonly find that inferences
are rather insensitive to moderately large variations in prior
assumptions, except when there are very few data (indeed, the
opposite case, of high sensitivity, poses a challenge to the
non-Bayesian – perhaps the data carry less information than
hoped?). But it’s clear that a test of sensitivity to model
probabilities will always fail:

p?(k |Y )

p?(l |Y )
=

p(k |Y )

p(l |Y )
×
(

p?(k)

p?(l)
÷ p(k)

p(l)

)

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 101 / 107



Applications

In reality, it’s not that easy...

No chance of passing the test of a sensitivity analysis
In ordinary parametric problems we commonly find that inferences
are rather insensitive to moderately large variations in prior
assumptions, except when there are very few data (indeed, the
opposite case, of high sensitivity, poses a challenge to the
non-Bayesian – perhaps the data carry less information than
hoped?). But it’s clear that a test of sensitivity to model
probabilities will always fail:

p?(k |Y )

p?(l |Y )
=

p(k |Y )

p(l |Y )
×
(

p?(k)

p?(l)
÷ p(k)

p(l)

)

Peter Green (Bristol/UTS) MCMC and model selection Bogotá, julio de 2013 101 / 107



Applications

In reality, it’s not that easy...

Improper parameter priors problems
In ordinary parametric problems it is commonly true that it is safe
to use improper priors – when posterior distributions are
well-defined as limits based on a sequence of approximating
proper priors (and not usually sensitive to what that sequence is).

But improper parameter priors make Bayes factors indeterminate
(since improper priors can only be defined up to arbitrary
normalising constants, which persist into marginal likelihoods).

And proper but vague/diffuse priors fail to solve the problem, since
the Bayes factors will depend on the arbitrary degree of
vagueness used.
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Applications

In reality, it’s not that easy...

Improper parameter priors problems, continued

In certain circumstances, ideas such as Intrinsic or Fractional
Bayes factors, or Expected Posterior priors, can be applied,
essentially based on tying together improper priors across
different models. These ideas lose much of the appeal of ideal
Bayes arguments, have arbitrary aspects, and are not widely
accepted.
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Applications

Model uncertainty? Yes, but do we have to choose?

Model uncertainty is a fact of life.
When can we quantify it?
When can we eliminate it?
When can we accommodate it?

Why choose?
Prediction
Scientific understanding
Presentation
Policy
Defence
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Applications

An illusion of unity?

Is ‘model’ too much of a catch-all?
different scientific mechanisms
selection of predictors in regression
number of components in mixture
order of AR model
complexity of polynomial or spline
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Applications

All the other criteria

Bayesian hypothesis testing, and ‘alternative-prior carpentry’
AIC, BIC, DIC, DIC+, MDL, Cp

Decision theory
Bayesian p-values
Posterior predictive checks
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