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Themes

Bayesians want to be nonparametric as much as frequentists do
Random effects modelled in a flexible way

Random distributions

Exchangeability and de Finetti

Urn models

Infinite mixtures
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Random distributions, exchangeability and urns

Random distributions

Our statistical model includes a quantity 6 € 2, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.
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Random distributions

Our statistical model includes a quantity 6 € 2, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.

Example: Q@ = {0, 1} (or any binary set). The only possible G is
Bernoulli, say G({0}) =1—g, G({1}) = g. If gis known so is G.
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distribution, so G is a random distribution.

Example: Q@ = {0, 1} (or any binary set). The only possible G is
Bernoulli, say G({0}) =1—g, G({1}) = g. If gis known so is G.
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Random distributions, exchangeability and urns

Random distributions

Our statistical model includes a quantity 6 € 2, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.

Example: Q@ = {0, 1} (or any binary set). The only possible G is
Bernoulli, say G({0}) =1—g, G({1}) = g. If gis known so is G.

If G is unknown so is g € [0, 1]; a natural prior for g is Beta(ag, a1). A
single 0 € Q still has a Bernoulli distribution (with

P(0 =1) = E(9) = ao/(a0 + 1))

The example begins to have a point (and is a model important in
practice) if we have n conditionally independent 6¢; from G; then )", 6;
follows a Beta—Binomial model. The 6, are unconditionally dependent.
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distribution, so G is a random distribution.
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Random distributions

Our statistical model includes a quantity 6 € Q, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.

Example: @ = {1,2,..., K} (or any finite set). The only possible G is
Multinomial, say G({k}) = gk, k =1.,2,...,K. If gis known so is G.

If G is unknown so is g; a natural prior for g is Dirichlet(a, ap, . . . ak).
A single 6 € Q still has a Multinomial distribution (with

P(0 = k) = E(gk) = ak/(Xk a))-
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Random distributions, exchangeability and urns

Random distributions

Our statistical model includes a quantity 6 € Q, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.

Example: @ = {1,2,..., K} (or any finite set). The only possible G is
Multinomial, say G({k}) = gk, k =1.,2,...,K. If gis known so is G.

If G is unknown so is g; a natural prior for g is Dirichlet(a, ap, . . . ak).
A single 6 € Q still has a Multinomial distribution (with

P(0 = k) = E(gk) = ak/(Xk a))-

The example begins to have a point (and is a model important in
practice) if we have n conditionally independent ¢; from G; then we
have a Dirichlet—Multinomial model.

Peter Green (Bristol/UTS) SEVEN UTS, March 2012 5/56



Random distributions, exchangeability and urns

The Dirichlet distribution

The Dirichlet(aq, ag, . .. ak) distribution has support the unit
(K —1)-simplex {(xq, Xa, ..., xx) : x; > 0,5, x; = 1} ¢ RK, and density

. ai)
Ma)lM(ag) ... T(ak)

(strictly the density of any K — 1 dimensional sub-vector).

ar—1 ar—1 akx—1
X4 X5 e Xk
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Random distributions, exchangeability and urns

Conjugacy under i.i.d. sampling

The Dirichlet (beta) prior distribution in these examples is not only

‘natural’, of course, it is also conjugate to the multinomial (binomial)
likelihood.

If g ~ Dirichlet(a, ag, ... ak) and 6;|g ~ g, independently,
i=1,2,...,n,then

g|91,92, coy O~ Dirichlet(a1 + N, + No,...0K + nK)
where ng = #{i : 6; = k}.

The posterior has the same form as the prior, and this assists with
interpretation (the prior is like ‘initial data’) and computation.
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Random distributions, exchangeability and urns

Exchangeability

In the Dirichlet-Multinomial (or Beta—Binomial) model, {0;}] , are
conditionally i.i.d. ~ G given G, but not marginally independent.
Rather they are (infinitely) exchangeable.
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Random distributions, exchangeability and urns

Exchangeability

In the Dirichlet-Multinomial (or Beta—Binomial) model, {0;}] , are
conditionally i.i.d. ~ G given G, but not marginally independent.
Rather they are (infinitely) exchangeable.

{0;}i_, are exchangeable if the joint distribution is invariant to
permutations of the labels i = 1,2,... n.

{0;}72, are infinitely exchangeable if for every n the joint distribution of
any subset {0; }7_, of size nis the same.

Peter Green (Bristol/UTS) SEVEN UTS, March 2012 8/56



Random distributions, exchangeability and urns

Exchangeability and de Finetti

de Finetti’s theorem (1931) says that when Q = {0, 1}, the joint
distribution of {6;}?°, is infinitely exchangeable if and only if for all n

1
p(91,92,...,9n):/ (1 — )" dF ()
0

for some distribution F on [0, 1], where t, = >"7_, 6.
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1
p(91,92,...,9n):/ (1 — )" dF ()
0

for some distribution F on [0, 1], where t, = >"7_, 6.

Further, the limiting frequency lim,_, - t,/n has distribution F.
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Random distributions, exchangeability and urns

Exchangeability and de Finetti

de Finetti’s theorem (1931) says that when Q = {0, 1}, the joint
distribution of {6;}?°, is infinitely exchangeable if and only if for all n

1
p(91,92,...,9n):/ aln(1 = a)" b dF(a)
0

for some distribution F on [0, 1], where t, = >"7_, 6.
Further, the limiting frequency lim,_, - t,/n has distribution F.

Exchangeable binary outcomes are always like Bernoulli trials with a
fixed but random success probability!
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Random distributions, exchangeability and urns

Pélya’s urn

You start with B blue balls and R red balls in an urn. Repeatedly and
indefinitely you draw a ball at random and replace it, adding an
additional ball of the same colour. Let 6; = 1 if the jth ball drawn is
blue, otherwise 0.
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Random distributions, exchangeability and urns

Pélya’s urn

You start with B blue balls and R red balls in an urn. Repeatedly and
indefinitely you draw a ball at random and replace it, adding an
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Random distributions, exchangeability and urns

Pélya’s urn

You start with B blue balls and R red balls in an urn. Repeatedly and
indefinitely you draw a ball at random and replace it, adding an
additional ball of the same colour. Let 6; = 1 if the jth ball drawn is
blue, otherwise 0.

The joint distribution of {6,}%°, is infinitely exchangeable! (Exercise:
find an algebra-free proof!)

The limiting frequency lim,_, t,/n has distribution Beta(B, R).
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4 ’
Pdlya’s urn

5 replicates of 100 draws from an urn model with B=2, R = 1.
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Random distributions, exchangeability and urns

Exchangeability and de Finetti

When Q = {1,2,..., K}, the joint distribution of {6;}7°, is infinitely
exchangeable if and only if for all n

p(01792?"'7 A tnk )

for some distribution F on the unit (K — 1)-simplex in R¥, and
tok = #{i < n: 0; = k}.
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Random distributions, exchangeability and urns

Exchangeability and de Finetti

When Q = {1,2,..., K}, the joint distribution of {6;}7°, is infinitely
exchangeable if and only if for all n

Tn
p(017927"'7 / k )
0
for some distribution F on the unit (K — 1)-simplex in R¥, and

thi =#{i < n:0; = kj}.
Further, the limiting frequencies (lim,_,oo thx/N)K_, have distribution F.
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Random distributions, exchangeability and urns

Random distributions

Our statistical model includes a quantity 6 € Q, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.

What about general Q? — most statistical models have at least one real
parameter! The usual approach would select a parametric model for G
— G is a distribution with prescribed functional form and one or more

unknown hyperparameters, which may be taken as known, or inferred.
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Random distributions, exchangeability and urns

Random distributions

Our statistical model includes a quantity 6 € Q, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.

What about general Q? — most statistical models have at least one real
parameter! The usual approach would select a parametric model for G
— G is a distribution with prescribed functional form and one or more

unknown hyperparameters, which may be taken as known, or inferred.

Could we instead leave G unspecified in form, as we could when Q
was finite?

And could we still expect conjugacy to help us?

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 13/56



Random distributions, exchangeability and urns

Exchangeability and de Finetti

For general Q, Hewitt & Savage (1955) showed that the joint
distribution of {#;}7°, is infinitely exchangeable if and only if for all n

1 n
P(Or € Bivte < Bar.o.otn < Br) = [ T] Q(B)u(e)

for some probability measure i on the set of probability measures on
Q.
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Random distributions, exchangeability and urns

Exchangeability and de Finetti

For general Q, Hewitt & Savage (1955) showed that the joint
distribution of {#;}7°, is infinitely exchangeable if and only if for all n

1 n
P01 € B1.02 € Ba.....0n < By) = [ T[ QBYu(o)
0 i
for some probability measure i on the set of probability measures on

Q.

Further, . is the distribution of the limiting empirical measure
M(B) =n"#{i < n:#6; c B}.
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The Dirichlet process

Given a probability distribution Gy on an arbitrary measure space ,
and a positive real a, we say the random distribution G on 2 follows a
Dirichlet process,

G ~ DP(«, Gyp)

if for all partitions Q = U, 1 Bj (BN Bx = 0if j # k), and for all m,

(G(By),. ... G(Bm)) ~ Dirichlet(aGy(B1), ..., aGo(Bm))

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 15/56



The Dirichlet process, prior to posterior

If
G ~ DP(«, Gp)
and, given G, 0, are i.i.d. from G, then
Gl01. 02, .., 0n ~ DP(a +n,—"— Gy + ——Fp)
|1727“'7HN «@ 7a+n0 Oé+nn

where F, is the empirical distribution n=1 3>, d,. (Jy is the point mass
distribution putting probability 1 on 6.)

So, yes, we still have conjugacy!
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The Dirichlet process - view 0

Given a probability distribution Gy on an arbitrary measure space €2,
and a positive real o, we say the random distribution G on Q follows a
Dirichlet process,

G ~ DP(a, Gp)

if for all partitions Q = U/ 1 Bi (Bin By = 0if j # k), and for all m,

(G(By),....G(Bm)) ~ Dirichlet(aGy(B1), ..., aGo(Bm))
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The Dirichlet process - view 0

Given a probability distribution Gy on an arbitrary measure space €2,
and a positive real o, we say the random distribution G on Q follows a
Dirichlet process,

G ~ DP(a, Gp)

if for all partitions Q = U/ 1 Bi (Bin By = 0if j # k), and for all m,
(G(By),...,G(Bm)) ~ Dirichlet(aGy(By), . . .,aGy(Bm))

The base measure Gy gives the expectation of G:

E(G(B)) = Go(B)

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 17 /56



Ties —and why?
Even if Gy is continuous, G is a.s. discrete, so i.i.d. draws

{0;,i =1,2,...,n} from G exhibit ties.
Why?

Peter Green (Bristol/UTS) SEVENI UTS, March 2012 18/56



______________Diichletprocess |
Ties —and why?

Even if Gy is continuous, G is a.s. discrete, so i.i.d. draws
{0;,i =1,2,...,n} from G exhibit ties.

Why? Consider two draws 64, 0> from G ~ DP(«, Gy).

P(61,6, € B|G) = G(B)2.
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______________Diichletprocess |
Ties —and why?

Even if Gy is continuous, G is a.s. discrete, so i.i.d. draws
{0;,i =1,2,...,n} from G exhibit ties.

Why? Consider two draws 64, 0> from G ~ DP(«, Gy).
P(01,05 € B|G) = G(B)?.
But G(B) ~ Beta(aGy(B), a(1 — Go(B)), so so

Go(B)(1 — Go(B))
1+a

P(6y,6, € B) = E[G(B)?] = Go(B)? +

14+ aGy(B)
1+«

i.e. P(02 € Bl#y € B)=(1+aGy(B))/(1 +a) = 1/(1 +«) as
Go(B) — 0. So if Gy is continuous, P(f2 = 601|01) = 1/(1 + «) V0.

= Go(B) x

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 18/56



The Dirichlet process - view 0 (ctd.)

The parameter « measures (inverse) concentration:
given i.i.d. draws {6;,i = 1,2,..., n} from G,

@ As a — 0, all ; are equal, drawn from Gj.

@ As o — oo, the 0; are drawn i.i.d. from G.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 19/56



Pdélya urn representation

You can generate the {6;} i.i.d. from G ~ DP(«a, Gy) without explicitly
creating G by

(*] Draw91 NGO
@ Fori=1,2,...,n—1,draw

Qi 4 ~
i+1 a+10 Oz—‘rlz

It is not so obvious now that the 6; are exchangeable!

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 20/56



Pdélya urn representation

You can generate the {6;} i.i.d. from G ~ DP(«a, Gy) without explicitly
creating G by

(*] Draw91 NGO
@ Fori=1,2,...,n—1,draw

Qi 4 ~
i+1 a+10 Oz—‘rlz

It is not so obvious now that the 6; are exchangeable!

Example: ordinary urn: Q = {Red, Blue}, o = initial number of balls,
Gp = initial proportions of each colour.

Peter Green (Bristol/UTS) SEVENI UTS, March 2012 20/56



Chinese restaurant process

A fun metaphor:

Customers enter a restaurant one-by-one.
@ The first customer sits at table 1
@ Subsequently, the (i + 1)th customer:
@ joins an existing table with ¢ previous customers, with probability

c/(a+i)
e sits alone at the next free table, with probability «//(« + i)

Peter Green (Bristol/UTS) SEVENI UTS, March 2012 21/56
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A fun metaphor:

Customers enter a restaurant one-by-one.
@ The first customer sits at table 1
@ Subsequently, the (i + 1)th customer:
@ joins an existing table with ¢ previous customers, with probability
c/(a+1)
e sits alone at the next free table, with probability «//(« + i)
This gives a partition of customers into tables that is exchangeable in
the labels of both customers and tables — and has the same law as
that describing ties in draws from a Dirichlet process.
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Chinese restaurant process

A fun metaphor:

Customers enter a restaurant one-by-one.
@ The first customer sits at table 1
@ Subsequently, the (i + 1)th customer:
@ joins an existing table with ¢ previous customers, with probability
c/(a+1)
e sits alone at the next free table, with probability «//(« + i)
This gives a partition of customers into tables that is exchangeable in
the labels of both customers and tables — and has the same law as
that describing ties in draws from a Dirichlet process.

The distribution of the clustering of customers is independent of their
order of entering the restaurant!
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Gibbs sampling application

(Unnecessary here, but useful motivation for later)

Since the {¢;} are exchangeable, it is also true that the full conditionals

are
o

1
a—l—n—1GO+a—|—n—1 Zée]

j#i
foralli=1,2,...,n,where 6_; = {0;,j # i}, which could be used to
generate the {6;} by Gibbs sampling.

00 ~

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 22/56



The Dirichlet process - view 1

Sethuraman'’s ‘stick-breaking’ construction of G:
@ draw 0]* ~ Gy, iid., j=1,2,...
@ draw V; ~ Beta(1,a),iid., j=1,2,...

@ define G to be the discrete distribution putting probability
(1 — V1)(1 — V2)(1 — V/’_1)Vj on 91*

Peter Green (Bristol/UTS) SEVEEN UTS, March 2012 23/56



Dirichlet process

The Dirichlet process

draws from DP, alpha = 1, GO = Gamma, pars: 2 1

3 N ‘ [ ——
o | T/ I
3 J(
F
P
o | i¢—1
\ \ \ \ \ \ \
0 2 3 4 5 6

theta
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The Dirichlet process

draws from DP, alpha = 10, GO = Gamma, pars: 2 1

1.0
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Some more properties of the Dirichlet process

@ lack of smoothness, e.g.

E(G(B)|(9)){1) = a/(a+ n)Gy(B) < E(G(B)) ifno ¢, € B,
however close they come

G(By) and G(By) negatively correlated for any disjoint By, By
(G(B), G(B%)), Gg and G)gc are independent, where

Gis(A) = G(A|B)

Gig ~ DP(aGo(B), Go|)

expected number of distinct 6; is ~ alog(n/«)

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 26 /56



Density estimation/infinite mixtures

The Dirichlet process model as it stands, generating randomly tied
random variables {6,}, is not a very useful model for data, but it is a
useful ingredient in a hierarchical model setup. The simplest example
is in mixture modelling.
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Density estimation/infinite mixtures

The Dirichlet process model as it stands, generating randomly tied
random variables {6,}, is not a very useful model for data, but it is a
useful ingredient in a hierarchical model setup. The simplest example
is in mixture modelling.
The Dirichlet process mixture model

@ G~ DP(«, Gy)

@ 0j|G~G,i=1,2,...,n,iid.

@ yi|G,0 ~ f(-;0;), independently

A kind of infinite mixture model, the number of components (distinct ;)
is not bounded.

Peter Green (Bristol/UTS) SEVENI UTS, March 2012 27 /56



A Dirichlet process mixture

draws from DPM, alpha = 1, GO = Gamma, pars: 2 1
sigma = 0.25
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A Dirichlet process mixture

draws from DPM, alpha = 10, GO = Gamma, pars: 2 1
sigma = 0.25
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Pélya urn for a Dirichlet process mixture

The (i + 1)th observation is allocated to a new cluster with probability

«
X i f(¥it1:0)Go(db)

and to existing cluster C;' with probability
_lcl J #Yis1:0) TTiecr F(yj: 0)Go(dh)
a+i [Iljec f(y;: 0)Go(db)

— the so-called Weighted Chinese restaurant process. This is
particularly useful when Gy is conjugate for [[; f(y;; 0), then all these
integrals have explicit closed form.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 30/56



More general models based on the DP

It is a small step to replace the 3rd stage here:
@ G~ DP(«, Gp)
@ 0i|G~@G,i=1,2,...,n,i.id.
@ yi|G, 0 ~ f(-;0)), independently

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012
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More general models based on the DP

It is a small step to replace the 3rd stage here:
@ G~ DP(«, Gy)
@ 0j|G~G,i=1,2,... n,iid.
@ yi|G, 0 ~ f(-;0)), independently
with
@ yi|G,0 ~ fi(-; x;, 0;), independently
In fact, all we need is that the likelihood of the data as a function of 6,

given G, is a product of functions of the individual ;. This allows huge
generality.
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More general models based on the DP

It is a small step to replace the 3rd stage here:
@ G~ DP(«, Gy)
@ 0j|G~G,i=1,2,... n,iid.
@ yi|G, 0 ~ f(-;0)), independently
with
@ yi|G,0 ~ fi(-; x;, 0;), independently
In fact, all we need is that the likelihood of the data as a function of 6,

given G, is a product of functions of the individual ;. This allows huge
generality.

Only the joint distribution of the {6,} contributes to the likelihood, not G
itself, so assuming G is not specifically an object of inference either, we
can formulate the model for {0} more directly, without losing anything.
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The Dirichlet process - view 2

Partition model: partition {1,2, ..., n} = U, ; at random, so that
d

p(C1, CQ, ceey Cd) = F((rx(jé—)n)adn(nj — 1)!
=1

where n; = #C;. (NB preference for unequal cluster sizes!) Draw
Hj* ~ Gy, i.id.,j=1,...,d, and set 0; :0/-* ifi e C;.

G is invisible in view 2.
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The Dirichlet process - view 3

Finite mixture model > _; w;f(-|¢}) with a Dirichlet prior on the weights:
@ Draw (wyq, Wo, ..., wk) ~ Dirichlet(d, ..., d)
@ Draw ¢; € {1,2,...,k} with P{¢c; = j} = w;,i.id.,i=1,...,n
@ Draw 07 ~ Gy, i.id.,, j=1,... .k
@ Set 0; = (92/
Let kK — oo, § — 0 such that k6 — «.

The result is a Dirichlet process mixture model, if you ignore the ‘empty
components’. G is also invisible in view 3.

Peter Green (Bristol/UTS) SEVENI UTS, March 2012 33/56



Dirichlet process mixtures

Dirichlet process mixtures — reprise

Items are clustered, according to a specific tractable distribution
parameterised by « > 0, and within each cluster the parameter ¢ is

drawn i.i.d. from Gy.

How nonparametric is that?
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Dirichlet process — summary

@ The only direct generalisation of the approach that is most natural
in the case of discrete ¢

@ Retains interpretability and computational advantages
@ Some unexpected and/or undesirable properties

@ Posterior consistency

@ Many different perspectives possible, suggesting generalisations
in different directions
e random measures
o stick-breaking
e Polya urn representation/algorithm
e partitions
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Children of the Dirichlet process

@ Lessons learned from the DP, and different directions for
generalisation

@ Conjugacy, neutrality and survival analysis
@ Pdlya trees
@ Species sampling models

@ (Doubly) nonparametric regression: dependent DP and kernel
stick-breaking priors

@ Hybrid DP for high-dimensional and functional parameters
@ Hierarchical DP

@ Exchangeable partition functions

@ Bernstein polynomials
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Multiple notations for partitions

@ cis apartition of {1,2,...,n}
@ clusters of partition are Cq, Co, ..., Cy
(d is the degree of the partition):
UL Ci={1.2,....n}, CnCp=0ifj#]
@ cis the allocation vector: ¢; = jif and only if i € C;

ITake care with multiplicities, and distinction between allocations and
partitions: labelling of C; is arbitrary, likewise values of {c¢;}.
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Pélya urn for a Dirichlet process mixture

Suppose G is conjugate for [ [, f(y;; #). Write m(ya) for marginal
likelihood.

The (i + 1)th observation is allocated to a new cluster with probability

(% «
X i f(Yi+1:6)Go(db) = ari m(Yis1)

and to existing cluster C! with probability

\Cl| [ f(Vit1:0) [ jcci F(): 0)Go(dO) _ \Cll mM(Yciugiv1y)
a+i ijEC}' f(y],G)Go(dO) a—+i m(yC;)

— the so-called Weighted Chinese restaurant (WCR) process.
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Gibbs sampling of allocation indices

Because of exchangeability, the WCR probabilities can be used for
Gibbs sampling of the allocation indices c;.

This was key to the early adoption of DP models in applied Bayesian
nonparametric methods. But this Gibbs sampler is easily generalised
to many other models.
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Gibbs sampling of allocation indices

Because of exchangeability, the WCR probabilities can be used for
Gibbs sampling of the allocation indices c;.

This was key to the early adoption of DP models in applied Bayesian
nonparametric methods. But this Gibbs sampler is easily generalised
to many other models.

The first factor (a/(a + i) or |CL|/(c + i)) is simply the ratio of the prior
probabilities of the appropriate partition with and without allocation of
the new item.
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Gibbs sampling of allocation indices

Because of exchangeability, the WCR probabilities can be used for
Gibbs sampling of the allocation indices c;.

This was key to the early adoption of DP models in applied Bayesian
nonparametric methods. But this Gibbs sampler is easily generalised
to many other models.

The first factor (a/(a + i) or |CL|/(c + i)) is simply the ratio of the prior
probabilities of the appropriate partition with and without allocation of
the new item.

Examples of models for which the partition distribution is explictly
available, and factorises so that the ratios needed are simple include
the Dirichlet-multinomial finite mixture model, and the Pitman—Yor
two-parameter Poisson—Dirichlet process, as well as the DP mixture
model — and the idea is not limited to (re-)allocating one item at a time.
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A coloured Dirichlet process

To define a variant on the DP in which not all clusters are
exchangeable:

@ for each ‘colour’ k =1,2,..., draw G from a Dirichlet process
DP(ak, Gok), independently for each k

@ draw weights (w) from the Dirichlet distribution Dir(vy1, 72, . ..),
independently of the G.

@ define Gon {k} x Q by G(k, B) = wxGk(B).
@ draw colour—parameter pairs (k;, ;) i.idfrom G,i=1,2,...,n
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Colouring and breaking sticks

m 000 A
C ge/ffenes ogucgt
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Coloured partition distribution

The CDP generates the following partition model: partition
{1,2,...,n} = Uk U,C-IL Cy; at random, so that

P(Ci1, Ci2;. .., Ciq,; Co1, - .., Cogy; Ca1, .. .) =

M k) M) (e + )
r(”JrkaVk)l;[(r(nkJrOék 1;[%—1 )

where Ngj = #ij, N = Zj Ng;.
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Coloured partition distribution

The CDP generates the following partition model: partition
{1,2,...,n} = Uk Uj‘.jg Cy; at random, so that

P(Ci1, Ci2;. .., Ciq,; Co1, - .., Cogy; Ca1, .. .) =

M, k) [ ()T (Nk + 7k
QoK) | | N —1)!
F(n+ >k ) 1;[ M(nk + )T j=1 "
where ny; = #Cyj, N = 3, Nig.

Note that the clustering remains exchangeable over items. For i € Cy;,
setki=kand6§; = 9].*, where 9/.* are drawn i.i.d. from Gyy.
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Pélya urn sampler for the CDP

The explicit availability of the (coloured) partition distribution
immediately allows generalisation of the P6lya urn Gibbs sampler to
the CDP.

In reallocating item /, let n;j" denote the number among the remaining

items currently allocated to Cy;, and define n," accordingly. Then
reallocate i to

@ a new cluster of colour k, with probability
o ak X (yk + M)/ (ak + mc") < m(Yy)
@ the existing cluster Cy;, with probability
oc g x (v + N /(e + ") x m(Yj Yck?')
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Distribution estimation allowing continuity

The Pdlya tree is a construction that generalises the Dirichlet process
in a way that allows the modeller to impose continuity.
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Distribution estimation allowing continuity

The Pdlya tree is a construction that generalises the Dirichlet process
in a way that allows the modeller to impose continuity.

We start an arbitrary infinite binary tree partition of Q2: Q = By U By,
with By N By = ), and continue: B, = B.g U B.1 with B.o N B.q4 = 0, for
any finite sequence ¢ of 0’'s and 1’s. To ‘centre’ at Gy, we typically
choose B so that Gy(B.) = 2~ if € has length m.
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Distribution estimation allowing continuity

The Pdlya tree is a construction that generalises the Dirichlet process
in a way that allows the modeller to impose continuity.

We start an arbitrary infinite binary tree partition of Q2: Q = By U By,
with By N By = ), and continue: B, = B.g U B.1 with B.o N B.q4 = 0, for
any finite sequence ¢ of 0’'s and 1’s. To ‘centre’ at Gy, we typically
choose B so that Gy(B.) = 2~ if € has length m.

We also have a tree of non-negative parameters A = {a.} and a tree
of independent random variables C = {C.} with C.q ~ Beta(a.g, ae1)
and Co=1-C,4.
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Distribution estimation allowing continuity

The Pdlya tree is a construction that generalises the Dirichlet process
in a way that allows the modeller to impose continuity.

We start an arbitrary infinite binary tree partition of Q2: Q = By U By,
with By N By = ), and continue: B, = B.g U B.1 with B.o N B.q4 = 0, for
any finite sequence ¢ of 0’'s and 1’s. To ‘centre’ at Gy, we typically
choose B so that Gy(B.) = 2~ if € has length m.

We also have a tree of non-negative parameters A = {a.} and a tree
of independent random variables C = {C.} with C.q ~ Beta(a.g, ae1)
and Co=1-C,4.

The we can define a random distribution G by requiring
G(B,) = G(B.)C.o and G(B.1) = G(B.)C.1.
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The Pdélya tree

If we set a. = ¢/2™ where mis the length of the sequence ¢, we
recover the Dirichlet process.
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If we set a. = ¢/2™ where mis the length of the sequence ¢, we
recover the Dirichlet process.

If we set o, = cm?, G is absolutely continuous w.p. 1.
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The Pdélya tree

If we set a. = ¢/2™ where mis the length of the sequence ¢, we
recover the Dirichlet process.

If we set o, = cm?, G is absolutely continuous w.p. 1.
Prior to posterior

If G follows a Pdlya process a priori, and # ~ G then G|6 also follows a
Polya process, but with «. replaced by o = o, + [ € B].

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 45 /56



EPPFs

Pitman (1995) characterised random partition models that are
@ exchangeable over items
@ exchangeable over clusters

@ ‘heritable’ — the marginal clustering of any subset of items follows
a model of the same form
by means of exchangeable partition probability functions. These
connect with normalised random measures with independent
increments, and generate explicit predictive distributions (Pdlya urn
algorithms).
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Hierarchical DP and overlapping clustering

Teh, Jordan, Beal and Blei (2006); use DP as base distribution Gy to
share clusters across multiple clustering problems.

Go
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Gy Go

‘ J’|I
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Regression: DDP

‘Bayesian nonparametric regression’ ought to mean ‘nonparametric’
both in the distributional and in the regression sense: can we model an
unknown distributional relationship Y|x ~ f(:|x) (ideally for moderately
high dimensional x) nonparametrically, and fully probabilistically, in a
way that is computationally practical?

The Dependent Dirichlet process (DDP) takes the stick-breaking
representation G = ), wxdp, and introduces dependence on
covariates x into (potentially) both the weights wj, and the point
locations 0y,. Dependence of w, on x is computationally awkward, so
typically
YIX~ Gy = Wndg,x)
h

is assumed, where 0;(x) are i.i.d. stochastic processes indexed by x
(often in practice gaussian processes).
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Stick-breaking

Spatial DDP

Gelfand/Kottas/MacEachern example based on French rainfall data

Peter Green (Bristol/UTS)
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Figure 1. Map of the L Foussillon Region in
Southern France Showing the 39 Sites Where the Precipitation Data
Have Been Observed. The six new sites considered for spatial prediction
in the simulation experiment are denoted by a, b, ¢, d, e, and f. The

ies of three French dep: are also drawn,
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Spatial DDP

Contrasting regular and spatial DP predictive inferences
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.
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Figure 4. Simulated Data, Case Il. (a) and (b) Bivariate posterior predictive densities for pairs of sites (3, $37) and (s7,S30) overlaid on
corresponaing plots of data. (c) and (d) Posterior predictive densities at new sites 52 = (6,316, 17,452) and 85 = (7,250, 18,870) and the associated
true densities (dashed lines). The solid lines correspond to the spatial DP mixture model; the dotted lines, to the parametric GP mixture model,
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Regression: weighted mixture of DPs

Dunson, Pillai and Park (2007) take

n

K(X, xj) .

Gy = E ( RALNE >G-* where G; ~ DP(a, Gp) i.i.d.
LS\ K x)) : (0, Go)
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Regression: weighted mixture of DPs
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Fig. 2. True conditional densities of y|x [CEEEEEE ), posterior mean estimates ( ) and 99% pointwise
credible intervals (------- ) in simulation case 2: (a) x =0.1 (10%); (b) x =0.25 (25%); (c) x =0.49 (50%);

(d) x =0.75 (75%); (e) x = 0.88 (90%); (f) data, along with the true and estimated mean regression curves
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St reaki

Regression: weighted mixture of DPs
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Fig. 3. Predictive densities for BMI conditional on a range of values for the level of LH, with age fixed at
the sample mean (——, posterior predictive means; — — —, 99% pointwise credible intervals): (a) LH=0.18
(1%); (b) LH=1.34 (10%); (c) LH=2.48 (25%); (d) LH=3.98 (50%); () LH=6.72 (75%); (f) LH= 10.14 (90%)
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Functional data: the hybrid DP

Petrone, Guindani & Gelfand, JRSSB, 2009.
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Fig. 1. Samples from the hDP, prior, for various values of the hyperparameters (some pure and hybrid curves are highlighted; the pure species have
continuous trajectories whereas hybrid curves are clearly characterized by their discontinuities; details are given in Section 4.2): (a) ¢ =3 and ¢¢=0.1;
(b) o9 =3 and ¢q =3; (c) ¢ =0.01 and ¢g=0.1
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|
Children of the Dirichlet process

@ Lessons learned from the DP, and different directions for
generalisation

@ Conjugacy, neutrality and survival analysis
@ Pdlya trees
@ Species sampling models

@ (Doubly) nonparametric regression: dependent DP and kernel
stick-breaking priors

@ Hybrid DP for high-dimensional and functional parameters
@ Hierarchical DP

@ Exchangeable partition functions

@ Bernstein polynomials
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@ Bayesian nonparametrics, Nils Hjort, Chris Holmes, Peter Mdiller,
and Stephen Walker (2009), Cambridge University Press

@ Nonparametric Bayesian Data Analysis, Peter Muller and
Fernando A. Quintana (2004), Statistical Science, 19, 95—-110.
DOI 10.1214/088342304000000017

@ Bayesian nonparametric inference for random distributions and
related functions, Stephen Walker, Paul Damien, Purushottam
Laud and Adrian Smith (1999), JRSS, B, 61, 485-527.

@ Email: peter.green@uts.edu.au
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