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Introduction

Themes

Bayesians want to be nonparametric as much as frequentists do
Random effects modelled in a flexible way
Random distributions
Exchangeability and de Finetti
Urn models
Infinite mixtures
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Random distributions, exchangeability and urns

Random distributions

Our statistical model includes a quantity θ ∈ Ω, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.

Example: Ω = {0,1} (or any binary set). The only possible G is
Bernoulli, say G({0}) = 1− g, G({1}) = g. If g is known so is G.

If G is unknown so is g ∈ [0,1]; a natural prior for g is Beta(α0, α1). A
single θ ∈ Ω still has a Bernoulli distribution (with
P(θ = 1) = E(g) = α0/(α0 + α1)).

The example begins to have a point (and is a model important in
practice) if we have n conditionally independent θi from G; then

∑
i θi

follows a Beta–Binomial model. The θi are unconditionally dependent.
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Random distributions, exchangeability and urns

Random distributions

Our statistical model includes a quantity θ ∈ Ω, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.

Example: Ω = {1,2, . . . ,K} (or any finite set). The only possible G is
Multinomial, say G({k}) = gk , k = 1,2, . . . ,K . If g is known so is G.

If G is unknown so is g; a natural prior for g is Dirichlet(α1, α2, . . . αK ).
A single θ ∈ Ω still has a Multinomial distribution (with
P(θ = k) = E(gk ) = αk/(

∑
k αk )).

The example begins to have a point (and is a model important in
practice) if we have n conditionally independent θi from G; then we
have a Dirichlet–Multinomial model.
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Random distributions, exchangeability and urns

The Dirichlet distribution

The Dirichlet(α1, α2, . . . αK ) distribution has support the unit
(K − 1)-simplex {(x1, x2, . . . , xK ) : xi ≥ 0,

∑
i xi = 1} ⊂ RK , and density

Γ(
∑

i αi)

Γ(α1)Γ(α2) . . . Γ(αK )
xα1−1

1 xα2−1
2 . . . xαK−1

K

(strictly the density of any K − 1 dimensional sub-vector).
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Random distributions, exchangeability and urns

Conjugacy under i.i.d. sampling

The Dirichlet (beta) prior distribution in these examples is not only
‘natural’, of course, it is also conjugate to the multinomial (binomial)
likelihood.

If g ∼ Dirichlet(α1, α2, . . . αK ) and θi |g ∼ g, independently,
i = 1,2, . . . ,n, then

g|θ1, θ2, . . . , θn ∼ Dirichlet(α1 + n1, α2 + n2, . . . αK + nK )

where nk = #{i : θi = k}.
The posterior has the same form as the prior, and this assists with
interpretation (the prior is like ‘initial data’) and computation.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 7 / 56



Random distributions, exchangeability and urns

Exchangeability

In the Dirichlet–Multinomial (or Beta–Binomial) model, {θi}ni=1 are
conditionally i.i.d. ∼ G given G, but not marginally independent.
Rather they are (infinitely) exchangeable.

{θi}ni=1 are exchangeable if the joint distribution is invariant to
permutations of the labels i = 1,2, . . . ,n.

{θi}∞i=1 are infinitely exchangeable if for every n the joint distribution of
any subset {θji}ni=1 of size n is the same.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 8 / 56
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Random distributions, exchangeability and urns

Exchangeability and de Finetti

de Finetti’s theorem (1931) says that when Ω = {0,1}, the joint
distribution of {θi}∞i=1 is infinitely exchangeable if and only if for all n

p(θ1, θ2, . . . , θn) =

∫ 1

0
αtn (1− α)n−tndF (α)

for some distribution F on [0,1], where tn =
∑n

i=1 θi .

Further, the limiting frequency limn→∞ tn/n has distribution F .

Exchangeable binary outcomes are always like Bernoulli trials with a
fixed but random success probability!

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 9 / 56
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Random distributions, exchangeability and urns

Pólya’s urn

You start with B blue balls and R red balls in an urn. Repeatedly and
indefinitely you draw a ball at random and replace it, adding an
additional ball of the same colour. Let θi = 1 if the i th ball drawn is
blue, otherwise 0.

The joint distribution of {θi}∞i=1 is infinitely exchangeable! (Exercise:
find an algebra-free proof!)

The limiting frequency limn→∞ tn/n has distribution Beta(B,R).
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Random distributions, exchangeability and urns

Pólya’s urn

5 replicates of 100 draws from an urn model with B = 2, R = 1.
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Random distributions, exchangeability and urns

Exchangeability and de Finetti

When Ω = {1,2, . . . ,K}, the joint distribution of {θi}∞i=1 is infinitely
exchangeable if and only if for all n

p(θ1, θ2, . . . , θn) =

∫ 1

0

K∏
k=1

α
tn,k
k dF (α)

for some distribution F on the unit (K − 1)-simplex in RK , and
tn,k = #{i ≤ n : θi = k}.
Further, the limiting frequencies (limn→∞ tn,k/n)K

k=1 have distribution F .
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Random distributions, exchangeability and urns

Random distributions

Our statistical model includes a quantity θ ∈ Ω, which has distribution
G, that is not fully known. To a Bayesian, G has to have a (prior)
distribution, so G is a random distribution.

What about general Ω? – most statistical models have at least one real
parameter! The usual approach would select a parametric model for G
– G is a distribution with prescribed functional form and one or more
unknown hyperparameters, which may be taken as known, or inferred.

Could we instead leave G unspecified in form, as we could when Ω
was finite?

And could we still expect conjugacy to help us?
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Random distributions, exchangeability and urns

Exchangeability and de Finetti

For general Ω, Hewitt & Savage (1955) showed that the joint
distribution of {θi}∞i=1 is infinitely exchangeable if and only if for all n

P(θ1 ∈ B1, θ2 ∈ B2, . . . , θn ∈ Bn) =

∫ 1

0

n∏
i=1

Q(Bi)µ(dQ)

for some probability measure µ on the set of probability measures on
Ω.

Further, µ is the distribution of the limiting empirical measure
M(B) = n−1#{i ≤ n : θi ∈ B}.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 14 / 56
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Dirichlet process

The Dirichlet process

Given a probability distribution G0 on an arbitrary measure space Ω,
and a positive real α, we say the random distribution G on Ω follows a
Dirichlet process,

G ∼ DP(α,G0)

if for all partitions Ω =
⋃m

j=1 Bj (Bj ∩ Bk = ∅ if j 6= k ), and for all m,

(G(B1), . . . ,G(Bm)) ∼ Dirichlet(αG0(B1), . . . , αG0(Bm))

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 15 / 56



Dirichlet process

The Dirichlet process, prior to posterior

If
G ∼ DP(α,G0)

and, given G, θi are i.i.d. from G, then

G|θ1, θ2, . . . , θn ∼ DP(α + n,
α

α + n
G0 +

n
α + n

Fn)

where Fn is the empirical distribution n−1∑
i δθi . (δθ is the point mass

distribution putting probability 1 on θ.)

So, yes, we still have conjugacy!

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 16 / 56



Dirichlet process

The Dirichlet process - view 0

Given a probability distribution G0 on an arbitrary measure space Ω,
and a positive real α, we say the random distribution G on Ω follows a
Dirichlet process,

G ∼ DP(α,G0)

if for all partitions Ω =
⋃m

j=1 Bj (Bj ∩ Bk = ∅ if j 6= k ), and for all m,

(G(B1), . . . ,G(Bm)) ∼ Dirichlet(αG0(B1), . . . , αG0(Bm))

The base measure G0 gives the expectation of G:

E(G(B)) = G0(B)

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 17 / 56
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Dirichlet process

Ties – and why?

Even if G0 is continuous, G is a.s. discrete, so i.i.d. draws
{θi , i = 1,2, . . . ,n} from G exhibit ties.

Why? Consider two draws θ1, θ2 from G ∼ DP(α,G0).

P(θ1, θ2 ∈ B|G) = G(B)2.

But G(B) ∼ Beta(αG0(B), α(1−G0(B)), so so

P(θ1, θ2 ∈ B) = E [G(B)2] = G0(B)2 +
G0(B)(1−G0(B))

1 + α

= G0(B)× 1 + αG0(B)

1 + α

i.e. P(θ2 ∈ B|θ1 ∈ B) = (1 + αG0(B))/(1 + α)→ 1/(1 + α) as
G0(B)→ 0. So if G0 is continuous, P(θ2 = θ1|θ1) = 1/(1 + α) ∀θ1.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 18 / 56
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Dirichlet process

The Dirichlet process - view 0 (ctd.)

The parameter α measures (inverse) concentration:
given i.i.d. draws {θi , i = 1,2, . . . ,n} from G,

As α→ 0, all θi are equal, drawn from G0.
As α→∞, the θi are drawn i.i.d. from G0.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 19 / 56



Dirichlet process

Pólya urn representation

You can generate the {θi} i.i.d. from G ∼ DP(α,G0) without explicitly
creating G by

Draw θ1 ∼ G0

For i = 1,2, . . . ,n − 1, draw

θi+1 ∼
α

α + i
G0 +

1
α + i

i∑
j=1

δθj

It is not so obvious now that the θi are exchangeable!

Example: ordinary urn: Ω = {Red,Blue}, α = initial number of balls,
G0 = initial proportions of each colour.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 20 / 56
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Example: ordinary urn: Ω = {Red,Blue}, α = initial number of balls,
G0 = initial proportions of each colour.
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Dirichlet process

Chinese restaurant process

A fun metaphor:

Customers enter a restaurant one-by-one.
The first customer sits at table 1
Subsequently, the (i + 1)th customer:

joins an existing table with c previous customers, with probability
c/(α + i)
sits alone at the next free table, with probability α/(α + i)

This gives a partition of customers into tables that is exchangeable in
the labels of both customers and tables – and has the same law as
that describing ties in draws from a Dirichlet process.

The distribution of the clustering of customers is independent of their
order of entering the restaurant!

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 21 / 56
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Dirichlet process

Gibbs sampling application

(Unnecessary here, but useful motivation for later)

Since the {θi} are exchangeable, it is also true that the full conditionals
are

θi |θ−i ∼
α

α + n − 1
G0 +

1
α + n − 1

∑
j 6=i

δθj

for all i = 1,2, . . . ,n, where θ−i = {θj , j 6= i}, which could be used to
generate the {θi} by Gibbs sampling.
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Dirichlet process

The Dirichlet process - view 1

Sethuraman’s ‘stick-breaking’ construction of G:

draw θ?j ∼ G0, i.i.d., j = 1,2, . . .
draw Vj ∼ Beta(1, α), i.i.d., j = 1,2, . . .
define G to be the discrete distribution putting probability
(1− V1)(1− V2) . . . (1− Vj−1)Vj on θ?j
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Dirichlet process

The Dirichlet process
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Dirichlet process

The Dirichlet process
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Dirichlet process

Some more properties of the Dirichlet process

lack of smoothness, e.g.
E(G(B)|(θi)

n
i=1) = α/(α + n)G0(B) < E(G(B)) if no θi ∈ B,

however close they come
G(B1) and G(B2) negatively correlated for any disjoint B1,B2

(G(B),G(Bc)), G|B and G|Bc are independent, where
G|B(A) = G(A|B)

G|B ∼ DP(αG0(B),G0|B)

expected number of distinct θi is ∼ α log(n/α)
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Dirichlet process mixtures

Density estimation/infinite mixtures

The Dirichlet process model as it stands, generating randomly tied
random variables {θi}, is not a very useful model for data, but it is a
useful ingredient in a hierarchical model setup. The simplest example
is in mixture modelling.

The Dirichlet process mixture model
G ∼ DP(α,G0)

θi |G ∼ G, i = 1,2, . . . ,n, i.i.d.
yi |G, θ ∼ f (·; θi), independently

A kind of infinite mixture model, the number of components (distinct θi )
is not bounded.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 27 / 56
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Dirichlet process mixtures

A Dirichlet process mixture
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Dirichlet process mixtures

A Dirichlet process mixture
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Dirichlet process mixtures

Pólya urn for a Dirichlet process mixture

The (i + 1)th observation is allocated to a new cluster with probability

∝ α

α + i

∫
f (yi+1; θ)G0(dθ)

and to existing cluster C i
r with probability

∝ |C
i
r |

α + i

∫
f (yi+1; θ)

∏
j∈C i

r
f (yj ; θ)G0(dθ)∫ ∏

j∈C i
r
f (yj ; θ)G0(dθ)

– the so-called Weighted Chinese restaurant process. This is
particularly useful when G0 is conjugate for

∏
i f (yi ; θ), then all these

integrals have explicit closed form.
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Dirichlet process mixtures

More general models based on the DP

It is a small step to replace the 3rd stage here:
G ∼ DP(α,G0)

θi |G ∼ G, i = 1,2, . . . ,n, i.i.d.
yi |G, θ ∼ f (·; θi), independently

with
yi |G, θ ∼ fi(·; xi , θi), independently

In fact, all we need is that the likelihood of the data as a function of θ,
given G, is a product of functions of the individual θi . This allows huge
generality.

Only the joint distribution of the {θi} contributes to the likelihood, not G
itself, so assuming G is not specifically an object of inference either, we
can formulate the model for {θi} more directly, without losing anything.
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Dirichlet process mixtures

The Dirichlet process - view 2

Partition model: partition {1,2, . . . ,n} =
⋃d

j=1 Cj at random, so that

p(C1,C2, . . . ,Cd ) =
Γ(α)

Γ(α + n)
αd

d∏
j=1

(nj − 1)!

where nj = #Cj . (NB preference for unequal cluster sizes!) Draw
θ?j ∼ G0, i.i.d., j = 1, . . . ,d , and set θi = θ?j if i ∈ Cj .

G is invisible in view 2.
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Dirichlet process mixtures

The Dirichlet process - view 3

Finite mixture model
∑

j wj f (·|θ?j ) with a Dirichlet prior on the weights:
Draw (w1,w2, . . . ,wk ) ∼ Dirichlet(δ, . . . , δ)

Draw ci ∈ {1,2, . . . , k} with P{ci = j} = wj , i.i.d., i = 1, . . . ,n
Draw θ?j ∼ G0, i.i.d., j = 1, . . . , k
Set θi = θ?ci

Let k →∞, δ → 0 such that kδ → α.

The result is a Dirichlet process mixture model, if you ignore the ‘empty
components’. G is also invisible in view 3.
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Dirichlet process mixtures

Dirichlet process mixtures – reprise

Items are clustered, according to a specific tractable distribution
parameterised by α > 0, and within each cluster the parameter θ is
drawn i.i.d. from G0.

How nonparametric is that?
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Dirichlet process mixtures

Dirichlet process – summary

The only direct generalisation of the approach that is most natural
in the case of discrete θ
Retains interpretability and computational advantages
Some unexpected and/or undesirable properties
Posterior consistency
Many different perspectives possible, suggesting generalisations
in different directions

random measures
stick-breaking
Pólya urn representation/algorithm
partitions

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 35 / 56



Dirichlet process mixtures

Children of the Dirichlet process

Lessons learned from the DP, and different directions for
generalisation
Conjugacy, neutrality and survival analysis
Pólya trees
Species sampling models
(Doubly) nonparametric regression: dependent DP and kernel
stick-breaking priors
Hybrid DP for high-dimensional and functional parameters
Hierarchical DP
Exchangeable partition functions
Bernstein polynomials

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 36 / 56



Pólya urn representations

Multiple notations for partitions

c is a partition of {1,2, . . . ,n}
clusters of partition are C1,C2, . . . ,Cd
(d is the degree of the partition):⋃d

j=1 Cj = {1,2, . . . ,n}, Cj ∩ Cj ′ = ∅ if j 6= j ′

c is the allocation vector: ci = j if and only if i ∈ Cj

!Take care with multiplicities, and distinction between allocations and
partitions: labelling of Cj is arbitrary, likewise values of {ci}.
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Pólya urn representations

Pólya urn for a Dirichlet process mixture

Suppose G0 is conjugate for
∏

i f (yi ; θ). Write m(yA) for marginal
likelihood.

The (i + 1)th observation is allocated to a new cluster with probability

∝ α

α + i

∫
f (yi+1; θ)G0(dθ) =

α

α + i
m(yi+1)

and to existing cluster C i
r with probability

∝ |C
i
r |

α + i

∫
f (yi+1; θ)

∏
j∈C i

r
f (yj ; θ)G0(dθ)∫ ∏

j∈C i
r
f (yj ; θ)G0(dθ)

=
|C i

r |
α + i

m(yC i
r∪{i+1})

m(yC i
r
)

– the so-called Weighted Chinese restaurant (WCR) process.
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Pólya urn representations

Gibbs sampling of allocation indices

Because of exchangeability, the WCR probabilities can be used for
Gibbs sampling of the allocation indices ci .

This was key to the early adoption of DP models in applied Bayesian
nonparametric methods. But this Gibbs sampler is easily generalised
to many other models.

The first factor (α/(α + i) or |C i
r |/(α + i)) is simply the ratio of the prior

probabilities of the appropriate partition with and without allocation of
the new item.

Examples of models for which the partition distribution is explictly
available, and factorises so that the ratios needed are simple include
the Dirichlet-multinomial finite mixture model, and the Pitman–Yor
two-parameter Poisson–Dirichlet process, as well as the DP mixture
model – and the idea is not limited to (re-)allocating one item at a time.

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 39 / 56
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Pólya urn representations

A coloured Dirichlet process

To define a variant on the DP in which not all clusters are
exchangeable:

for each ‘colour’ k = 1,2, . . ., draw Gk from a Dirichlet process
DP(αk ,G0k ), independently for each k
draw weights (wk ) from the Dirichlet distribution Dir(γ1, γ2, . . .),
independently of the Gk .
define G on {k} × Ω by G(k ,B) = wkGk (B).
draw colour–parameter pairs (ki , θi) i.i.d from G, i = 1,2, . . . ,n
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Pólya urn representations

Colouring and breaking sticks

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 41 / 56



Pólya urn representations

Coloured partition distribution

The CDP generates the following partition model: partition
{1,2, . . . ,n} =

⋃
k
⋃dk

j=1 Ckj at random, so that

p(C11,C12, . . . ,C1d1 ; C21, . . . ,C2d2 ; C31, . . .) =

Γ(
∑

k γk )

Γ(n +
∑

k γk )

∏
k

Γ(αk )Γ(nk + γk )

Γ(nk + αk )Γ(γk )
αdk

k

dk∏
j=1

(nkj − 1)!


where nkj = #Ckj , nk =

∑
j nkj .

Note that the clustering remains exchangeable over items. For i ∈ Ckj ,
set ki = k and θi = θ?j , where θ?j are drawn i.i.d. from G0k .
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Pólya urn representations

Pólya urn sampler for the CDP

The explicit availability of the (coloured) partition distribution
immediately allows generalisation of the Pólya urn Gibbs sampler to
the CDP.

In reallocating item i , let n−i
kj denote the number among the remaining

items currently allocated to Ckj , and define n−i
k accordingly. Then

reallocate i to
a new cluster of colour k , with probability
∝ αk × (γk + n−i

k )/(αk + n−i
k )×m(Yi)

the existing cluster Ckj , with probability
∝ n−i

kj × (γk + n−i
k )/(αk + n−i

k )×m(Yi |YC−i
kj

)

Peter Green (Bristol/UTS) Bayes NP UTS, March 2012 43 / 56



Random measures

Distribution estimation allowing continuity

The Pólya tree is a construction that generalises the Dirichlet process
in a way that allows the modeller to impose continuity.

We start an arbitrary infinite binary tree partition of Ω: Ω = B0 ∪ B1,
with B0 ∩ B1 = ∅, and continue: Bε = Bε0 ∪ Bε1 with Bε0 ∩ Bε1 = ∅, for
any finite sequence ε of 0’s and 1’s. To ‘centre’ at G0, we typically
choose Bε so that G0(Bε) = 2−m if ε has length m.

We also have a tree of non-negative parameters A = {αε} and a tree
of independent random variables C = {Cε} with Cε0 ∼ Beta(αε0, αε1)
and Cε0 = 1− Cε1.

The we can define a random distribution G by requiring
G(Bε0) = G(Bε)Cε0 and G(Bε1) = G(Bε)Cε1.
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Random measures

The Pólya tree

If we set αε = c/2m where m is the length of the sequence ε, we
recover the Dirichlet process.

If we set αε = cm2, G is absolutely continuous w.p. 1.

Prior to posterior

If G follows a Pólya process a priori, and θ ∼ G then G|θ also follows a
Pólya process, but with αε replaced by α′ε = αε + I[θ ∈ Bε].
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Partition models

EPPFs

Pitman (1995) characterised random partition models that are
exchangeable over items
exchangeable over clusters
‘heritable’ – the marginal clustering of any subset of items follows
a model of the same form

by means of exchangeable partition probability functions. These
connect with normalised random measures with independent
increments, and generate explicit predictive distributions (Pólya urn
algorithms).
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Partition models

Hierarchical DP and overlapping clustering

Teh, Jordan, Beal and Blei (2006); use DP as base distribution G0 to
share clusters across multiple clustering problems.

Hierarchical Dirichlet Processes

I Making G0 discrete forces shared cluster between G1 and G2.
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Stick-breaking

Regression: DDP

‘Bayesian nonparametric regression’ ought to mean ‘nonparametric’
both in the distributional and in the regression sense: can we model an
unknown distributional relationship Y |x ∼ f (·|x) (ideally for moderately
high dimensional x) nonparametrically, and fully probabilistically, in a
way that is computationally practical?

The Dependent Dirichlet process (DDP) takes the stick-breaking
representation G =

∑
h whδθh and introduces dependence on

covariates x into (potentially) both the weights wh and the point
locations θh. Dependence of wh on x is computationally awkward, so
typically

Y |x ∼ Gx =
∑

h

whδθh(x)

is assumed, where θh(x) are i.i.d. stochastic processes indexed by x
(often in practice gaussian processes).
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Stick-breaking

Spatial DDP

Gelfand/Kottas/MacEachern example based on French rainfall data

Gelfand, Kottas, and MacEachern: Bayesian Nonparametric Spatial Modeling 1027 

arbitrary and apart from our primary objectives, which are to 

retrieve multimodality and nonstationarity in analyzing the spa 
tial effects in our model. For all of the examples, we followed 
the suggestions in Section 2.3 for prior specification. 

4.1 Simulation Experiment 

We can propose interesting nonstationary, non-Gaussian 

models from which to simulate using two-component mix 

tures of independent GPs. The general version sets process k 
to be a GP with constant mean /z? and covariance func 

tion a(s)a(s/)exp(?0^||s 
? 

s'||), k = 1, 2, where process 1 
is sampled with probability a and process 2 is sampled 

with probability 1 ? a. Hence, for the resulting process Zp, 
E(Z(s)) = a?\ + (1 

? 
a)?2 and 

cov(Z(s),Z(s7)) 

= 
?f(l -aOOzi -M2)2 

+ a(s)a(s/) 

x 
{aexp(-0i ||s 

- 
s7!!) + (1 

- 
a)exp(-02||s 

- 
s'||)}. 

A convenient choice for a2(s) is a2(s) = a2{(lat(s) 
? 

midlat)2 + (lon(s) 
? 

midlon)2}, where lat(s) and lon(s) de 
note the latitude and longitude (or projections thereof) for lo 
cation s and midlat = (maxlat(s) + minlat(s))/2 and midlon = 

(maxlon(s) + minlon(s))/2. Because <r(s) -> 0 as s -> 

(midlat, midlon), to ensure that there will be a far-from 

degenerate spatial term associated with each location, we set 

?r(s) = max(or(s), 1). Finally, we generate the data from the 

process Z(s) + eis), where eis) is a pure error process with 
variance x2. 

We simulated 75 replications at the 39 locations shown in 

Figure 1. These locations are identical to the 39 sites in the 

6500 7000 7500 8000 

Figure 1. Geographic Map of the Languedoc-Roussillon Region in 

Southern France Showing the 39 Sites Where the Precipitation Data 

Have Been Observed. The six new sites considered for spatial prediction 
in the simulation experiment are denoted by a, b, c, d, e, and f. The 

boundaries of three French departments are also drawn. 

Languedoc-Roussillon region that provide the French precip 
itation data discussed in Section 4.2. We explored simulation 

using several choices in the foregoing specification. The two 
cases that we report here are case I, pi = pi2 (= 0), 0i 

= 
02 

(= .0025), a = .0025, and x2 ? 1, yielding a nonstationary GP; 

and case II, <r(s) 
= a (= .5), 0i 

= 
02 

= 
(.0025), x2 = .5, 

pL\ = 
? 

2, pt2 
= 2, and a = .75, yielding a stationary process 

that is non-Gaussian and in fact has bimodal univariate and bi 

variate densities. 

We note that neither of these cases is included in our spec 

ification (5). The parameter values used to generate the data 
under cases I and II have no connection to any of the parame 

ters in (5). Hence our simulation study focuses on comparison 
of posterior mean covariances with sample covarianees, com 

parison of posterior predictive densities with the data or true 

sampling densities in both univariate and bivariate fashion, and 
demonstration of and assessment of nonstationarity. 

Regarding case I, Figure 2 plots posterior predictive den 
sities for six sites where data were generated as well as 

six new sites, ?i = (7,250,18,500), s2 = (6,316,17,452), 
s3 = (6,000, 18,200), s4 = (6,298,18,245), s5 = (7,250, 
18,870), and s6 = (7,500, 19,000) (denoted by a, b, c, d, e, 
and f in Fig. 1). Predictive inference is arguably quite accu 

rate, considering the fairly small sample size. Of course, the 

more general mixture model, described after (2), would capture 
more successfully the smaller variances in the center of the re 

gion (e.g., sites S29 and ?i). Figure 3 illustrates the departure 
from isotropy of the process as well as the accuracy of pos 

terior inference for covariances under our fitting model. Here 

each panel includes, for a specific site s?, cov(F(sz), Y(Sj)\data), 
j ̂  /, along with the corresponding sample covariances. Results 
are presented for six representative sites sz. 

Of most interest for the isotropic process of case II is the 

bimodality of its univariate and bivariate densities. Our model 
was very successful in capturing this feature, as revealed by 
univariate and bivariate posterior predictive densities for several 

combinations of sites s; and the new sites si,..., ?6- We provide 
some illustrations in Figure 4. 

Turning to comparison with the GP mixture model (as de 
fined in Remark 1 of Sec. 2.1), for case II, the superior 
predictive performance of the spatial DP mixture model for 

nonstandard distributional shapes is evident from Figure 4. 
For case I, predictive inference under the nonparametric model 

again was more accurate, although in this case, differences from 

the parametric model were less pronounced. (Therefore, we 

have not overlaid these results on Figs. 2 and 3, to avoid clut 

tering them.) 
Finally, regarding formal model comparison, we note that to 

date there has been little work on comparison of a nonparamet 

ric model with another nonparametric model, a semiparametric 

model, or a fully parametric model. Standard penalized likeli 
hood methods are not applicable to the nonfinite-dimensional 
likelihoods that arise under nonparametric modeling. Rather, 

it seems more sensible to work in predictive space. One possi 

bility is to attempt to calculate Bayes factors, following the ap 
proach laid out by Basu and Chib (2003). Of course, one might 
prefer not to reduce a model to a single number to make com 

parisons. Graphical comparison of predictive performance (as 
in, e.g., Fig. 4) may be more illuminating, particularly if only 
a few models are being considered. 
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Spatial DDP

Contrasting regular and spatial DP predictive inferencesGelfand, Kottas, and MacEachern: Bayesian Nonparametric Spatial Modeling 1029 
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Figure 4. Simulated Data, Case II. (a) and (b) Bivariate posterior predictive densities for pairs of sites (s36, s37) and (s7, s39) overlaid on 

corresponding plots of data, (c) and (d) Posterior predictive densities at new sites s2 = (6,316, 17,452) and s5 = (7,250, 18,870) and the associated 

true densities (dashed lines). The solid lines correspond to the spatial DP mixture model; the dotted lines, to the parametric GP mixture model. 

4.2 Precipitation Data From a Region 
in Southern France 

The French precipitation data that we examine were dis 
cussed by Meiring et al. (1997) and also studied by Dami?n 
et al. (2001). There are initially 108 altitude-adjusted 10-day 
aggregated precipitation records from November and Decem 

ber 1975-1992 for the 39 sites shown in Figure 1. Concerns 

regarding missing values and too many 0's for some of the 

records led us to reduce the dataset to 75 replicates that have 
been log-transformed (after adding 1 to all measurements) with 

site-specific means removed. [If we did not remove site-specific 
means, then we would have to include p(s?) in the models. For 

prediction, this would necessitate specifying a /x(s) process. 

Site-specific centering avoids this, and because primary inter 

est is in the shape of predictive distributions and in the associ 
ation in bivariate predictive distributions, it seems appropriate.] 
Dami?n et al. (2001) used the same transformation but worked 
with the full dataset. Their approach reveals relatively low 

spatial covariance in the central region and higher spatial co 

variance in the northeast region. The corresponding result of 

Meiring et al. (1997) is qualitatively similar, although those au 

thors further standardized the data by dividing by site-specific 
standard deviations. 

Preliminary exploration of the version of the dataset that we 

consider also suggests that spatial association is higher in the 

northeast than in the southwest. For instance, Figure 5 presents 

plots of sample covariances between each one of six sites (from 

the different subregions) and the other 38 sites versus distance. 
The corresponding posterior mean covariances, included in the 

plots, indicate a good fit to the data, as do the posterior predic 
tive densities at the 39 observation sites; Figure 6 shows results 
at nine of the sites. We note the ability of the model to cap 
ture different distributional shapes, including fairly symmetri 
cal densities (e.g., sites S4 and S27) and skewed densities (e.g., 

sites S15 and s22). 

Figure 5 immediately provides evidence of departure from 

isotropy (compare, e.g., sites 1 and 30). In an effort to examine 

nonstationarity, we selected 21 pairs of sites across the region, 

with all pairs having the same separation vector and separated 

in a south-north direction. The pairs are shown in Figure 7(a). 

Figure 7(b) shows the associated posterior mean covariances 

suggesting departure from stationarity, encouraging a nonsta 

tionary spatial specification. 
In the interest of validation for spatial prediction, we re 

moved two sites from each of the three subregions in Figure 1 

(specifically, sites S4, S35, S29, S30, S13, and S37), and refitted 

the model using only the data from the remaining 33 sites. 

Figures 8 and 9 provide results for new sites (si,..., %) 
= 

(S4, S35, S29, S30, Si3, S37). We compare posterior predictive den 

sities with the data at these sites from the full dataset, including 
all 39 sites, that were not used to fit the model in this valida 
tion exercise. Figure 10 shows, for each / = 1,..., 6, plots of 

cov(y(s/), y(s/)|data), for all 33 sites s/, versus distance, and 

corresponding plots with sample covariances based on the full 
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Regression: weighted mixture of DPs

Dunson, Pillai and Park (2007) take

Gx =
n∑

i=1

(
γiK (x , xi)∑n
l=1 γlK (x , xl)

)
G?

i where G?
i ∼ DP(α,G0) i.i.d.
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Fig. 2. True conditional densities of yjx ( . . . . . . .), posterior mean estimates ( ) and 99% pointwise
credible intervals (- - - - - - -) in simulation case 2: (a) x D 0:1 (10%); (b) x D 0:25 (25%); (c) x D 0:49 (50%);
(d) x D0:75 (75%); (e) x D0:88 (90%); (f) data, along with the true and estimated mean regression curves

f.yi|xi/= exp.−2xi2/N.yi; xi2, 0:01/+{1− exp.−2xi2/}N.yi; x4
i2, 0:04/:

Fig. 2 shows the true density (dotted curve), the estimated predictive density (full curve) and
pointwise 99% credible intervals (broken curves) for a range of values of xi2. The estimates cor-
respond approximately to the true densities in each case. Fig. 2(f) contains an (x−y)-plot of the
data along with the estimated predictive mean curve (full curve), which is indistinguishable from
the true mean curve (dotted curve). The estimated value of ψ was 70.2, with a 95% interval of
[26.9,94.3], whereas the estimated value of κ was 0.0049, with a 95% interval of [0.0038,0.0063].
The value of κ was similar to that obtained in case 1, whereas ψ was considerably higher, as
expected. The number of occupied locations was higher than in case 1, with a 96.7% poster-
ior probability of one occupied location in case 1, and a 95.7% probability of two occupied
locations in case 2.

Repeating the analysis as described above, but with φi
IID∼ G and G∼DP.αG0/, we obtained

poor results (the density estimates diverged substantially from the true densities, and the pos-
terior mean curve failed to capture the true non-linear function), suggesting that a DP mixture
model is inadequate.

6. Application: epidemiologic study

6.1. Data structure and scientific problem
The methods are applied to a study of reproductive hormones and obesity. Study participants
were premenopausal 35–50-year-old women who had been randomly selected from the mem-
bership list of a Washington DC health plan. Luteinizing hormone (LH) was measured in urine
collected by the women on the first or last five days of the menstrual cycle to avoid mid-cycle var-
iability due to the rapid rise in LH at the time of ovulation. Appropriately timed urine samples
assayed for LH and a current body mass index (BMI) were available for 522 women.

An association between LH and BMI would be interesting for several reasons. First, there
is growing evidence that LH has a proliferative effect on uterine smooth muscle cells, possibly
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Fig. 3. Predictive densities for BMI conditional on a range of values for the level of LH, with age fixed at
the sample mean ( , posterior predictive means; – – –, 99% pointwise credible intervals): (a) LH = 0.18
(1%); (b) LH = 1.34 (10%); (c) LH = 2.48 (25%); (d) LH = 3.98 (50%); (e) LH = 6.72 (75%); (f) LH = 10.14 (90%)

proposed weighted mixture of DP priors for the uncountable collection of unknown mixture
distributions indexed by the predictors. This specification has some appealing theoretic prop-
erties, including a simple form for the dependence in random measures at different predictor
values and a generalization of the Pólya urn scheme to incorporate predictor-dependent weights.
In addition, the specification leads to straightforward computation using a generalization of
MCMC algorithms that are commonly used for DP mixture models.

In future research, it will be interesting to consider additional properties of the prior specifi-
cation and generalizations. The current specification relies on placing random basis measures at
the sample predictor values, so a natural question is how to avoid sample dependence. This can
potentially be accomplished by placing a random probability measure on the distribution of
basis locations, allowing them to be assigned to any location in the continuous predictor space.

Another area of interest is to develop methods that rely directly on the generalized Pólya
urn scheme by using a kernel to borrow information about the weights {wij} without explicitly
specifying b.x/. For example, we could let wij = K.xi, xj/, avoiding the need to update the
γ-weights and to keep track of the assignment to DP components in implementing posterior
computation.
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Functional data: the hybrid DP

Petrone, Guindani & Gelfand, JRSSB, 2009. 768
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Fig. 1. Samples from the hDPk prior, for various values of the hyperparameters (some pure and hybrid curves are highlighted; the pure species have
continuous trajectories whereas hybrid curves are clearly characterized by their discontinuities; details are given in Section 4.2): (a) φ0 D 3 and φq D 0:1;
(b) φ0 D3 and φq D3; (c) φ0 D0:01 and φq D0:1
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Children of the Dirichlet process

Lessons learned from the DP, and different directions for
generalisation
Conjugacy, neutrality and survival analysis
Pólya trees
Species sampling models
(Doubly) nonparametric regression: dependent DP and kernel
stick-breaking priors
Hybrid DP for high-dimensional and functional parameters
Hierarchical DP
Exchangeable partition functions
Bernstein polynomials
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