

Introduction to Data Analysis (Data Analysis I)

Peter Green

Emeritus Professor of Statistics University of Bristol

Peter Green (Bristol) Data Analysis I AIMS Cameroon 1/154

Outline

- 🚺 1. Paradigm
- 2. Simple linear regression
- 3. Linear models
- 4. Model formulation
- 5. Least squares estimation
- 6. Statistical performance
- 7. Normal theory assumptions
 - 8. Model choice in linear models
- 9. Factorial experiments
- 10. Residual analysis
- 11. Variable Selection
- 12. Weighted Least Squares
- 3 13. Data collection

How does this course fit in the programme?

- This unit builds on Introduction to Probability and Statistics (Dario Domingo, September/October 2025) – we use the distribution theory and basics of inference to discuss Linear Models, the main technical aspect to this course
- It is followed up by Data Analysis II (Thierry Chekouo, May/June 2026) which leads on from Linear Models to Generalized Linear Models

Topics in syllabus, not yet in slides 1

- Ability to manage various data sets and perform exploratory data analysis.
 - Different data collection methods and data types with real life health-related examples e.g routine malaria surveillance data vs cohort studies.
- Know different approaches to data collection and the use of different data types.
 - Sampling techniques: Probability and non-probability techniques and examples.
- Know how to pose relevant questions in data analysis, and formulate these questions statistically.
 - Sample size determination for epidemiological studies
 - Limitations and advantages of different data types and when to use what data (i.e what is the question being asked).
 - Accessing data, review of metadata, using data dictionaries, study types.
 - Checking for basic errors and distributions; documentation of errors or missing data; creating variables and transforming data.
 - Univariate summary statistics, tabulations and descriptive figures.
 - Preparing statistical analysis plans

Topics in syllabus, not yet in slides 2

- Understand the basics of systematic literature review and meta-analysis
 - What is systematic literature review? What types of questions does it answer? How is it done?
 - What is meta-analysis? What types of questions does it answer? How is it done?
 - Be able to interpret and use results from systematic literature review and meta-analysis with application to mathematical epidemiology using literature based examples

1. Paradigm for probabilistic statistical inference

When does "data analysis" become "statistical inference"? ... when we go beyond statements about the the data we have to those about the data we might have had or even what caused these data?

This leads us to distinguish our sample from the population.

The sample might have been different while the population is what we are really interested in

Example (a finite population)

We are interested in the population of 18–25 year-old people in Cameroon, and we study this by drawing a sample of such people, and analysing that instead. What does that sample tell us about the population?

Example (an infinite population)

We are interested in the accuracy of a new instrument for measuring What does that sample tell us about the population?

Peter Green (Bristol) Data Analysis I AIMS Cameroon 6/154

The main ingredients, when the population is infinite

When the population is infinite, we can think of it as a probability distribution!

- Regard the data x as the observed values of a random vector X
- Model the distribution of X with a probability (density) function $f(X; \theta)$ depending on a parameter θ
- Use the observed x in $f(x; \theta)$ to make statements about θ , e.g.
 - estimate θ
 - calculate a confidence interval for θ
 - test hypotheses about the value of θ

The main ingredients, when the population is infinite

When the population is infinite, we can think of it as a probability distribution!

- Regard the data x as the observed values of a random vector X
- Model the distribution of X with a probability (density) function $f(X; \theta)$ depending on a parameter θ
- Use the observed x in $f(x; \theta)$ to make statements about θ , e.g.
 - estimate θ
 - calculate a confidence interval for θ
 - test hypotheses about the value of θ

Simple linear regression –Example: Oxygen Uptake

Example

For each of 24 males, the maximum volume of oxygen uptake in the blood and the time taken to run 2 miles (in seconds) were measured. Interest lies on the dependency between the time to run 2 miles and the oxygen uptake. oxy=c(42.3, 53.1, 42.1, 50.1, 42.5, 42.5, 47.8, 49.9, 36.2, 49.7, 41.5, 46.2, 48.2, 43.2, 51.8, 53.3, 53.3, 47.2,

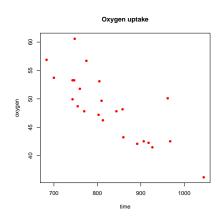
```
56.9, 47.8, 48.7, 53.7, 60.6, 56.7)

time=c(918, 805, 892, 962, 968, 907, 770, 743,1045, 810, 927, 813, 858, 860, 760, 747,743, 803, 683, 844, 755, 700, 748, 775)

plot(time, oxv. col="red", main="Oxvgen uptake", type="p",pch=16)
```

Peter Green (Bristol) Data Analysis I AIMS Cameroon 9/154

Simple linear regression: Oxygen Uptake Example



- For individual i, let x_i be the time to run 2 miles, and Y_i be the maximum volume of oxygen uptake, $i = 1, \dots, 24$.
- A possible model is

$$Y_i = \beta_0 + \beta_1 x_i + e_i, i = 1, \dots, 24,$$

where e_i are independent random variables with variance σ^2 , and β_0 and β_1 are constants.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 10/154

Simple linear regression

We want to choose α and β to minimise the sum of squares $SS = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$. Differentiating partially,

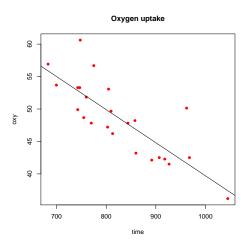
$$\frac{\partial SS}{\partial \alpha} = \sum_{i=1}^{n} 2(y_i - \alpha - \beta x_i)(-1) = 0 \text{ if and only if } \sum_i y_i = n\alpha + \beta \sum_i x_i$$

$$\frac{\partial SS}{\partial \beta} = \sum_{i=1}^{n} 2(y_i - \alpha - \beta x_i)(-x_i) = 0 \text{ if and only if } \sum_i x_i y_i = \alpha \sum_i x_i + \beta \sum_i x_i^2$$

Solving for α and β we find the least squares estimates

$$\hat{\beta} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$
 and $\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$

Simple linear regression: Oxygen Uptake Example



Simple linear regression

Move this and next slide to be an example of the general case Hence

$$\mathbf{X}'\mathbf{X} = \begin{pmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{pmatrix}
\Rightarrow (\mathbf{X}'\mathbf{X})^{-1} = \frac{1}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \begin{pmatrix} \sum_{i=1}^{n} x_i^2 & -\sum_{i=1}^{n} x_i \\ -\sum_{i=1}^{n} x_i & n \end{pmatrix}.$$

Also

$$\mathbf{X}'\mathbf{y} = \begin{pmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n x_i y_i \end{pmatrix}.$$

13/154

Simple linear regression

From which we can derive the following

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y} = \begin{pmatrix} \overline{\boldsymbol{y}} - \frac{\boldsymbol{S}_{xy}}{\boldsymbol{S}_{xx}} \overline{\boldsymbol{X}} \\ \frac{\boldsymbol{S}_{xy}}{\boldsymbol{S}_{xx}} \end{pmatrix}$$

where

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n \overline{x} \, \overline{y}$$

and

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 = s_x^2(n-1)$$

where s_x^2 is the sample variance of the observed x_i , i = 1, ..., n.

14/154

Example

Example

Consider the relationship between the height H and the weight W of individuals in a certain city. Certainly there's no functional relationship between H and W, but there does seem to be some kind of relation. We consider them as random variables and postulate that (H, W) has a bivariate normal distribution. Then

$$E[W|H=h] = \beta_0 + \beta_1 h$$

where β_0 and β_1 are functions of the parameters in a bivariate normal density. Note that β_0 , β_1 and h are all constants. We may write

$$W = \beta_0 + \beta_1 h + E$$

where the error *E* is a normally distributed random variable with mean zero.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 15/154

Example (cont.)

Example

Thus if we observe the heights and weights of a sample of n people, the model for the weights w_i, \ldots, w_n is given by

$$w_i = \beta_0 + \beta_1 h_i + e_i$$
, for $i = 1, \ldots, n$

where the error $\mathbf{e}_i \sim N(0, \sigma^2)$. This is a **simple linear regression model**: a linear model with one explanatory variable. In matrix form,

$$\mathbf{w} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} 1 & h_1 \\ 1 & h_2 \\ \vdots & \vdots \\ 1 & h_n \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}.$$

Simple linear regression: Example Oxygen uptake

move this and later oxygen example slides to correct place in the narrative

```
lm(formula = oxy \sim time)
```

```
Min
                          1Q
                               Median
                                           3Q
                                                   Max
Residuals:
            -3.6461
                     -2.6422 -0.6792
                                        1.0620
                                                 8.4545
Coefficients:
             Estimate
                       Std. Error t value
                                               Pr(>|t|)
 (Intercept)
            90.69476
                        6.54324 13.861 2.38e-12 ***
                                           1.62e-06 ***
 time
             -0.05099
                        0.00787 -6.479
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.499 on 22 degrees of freedom
Multiple R-squared: 0.6561, Adjusted R-squared: 0.6405
F-statistic: 41.98 on 1 and 22 DF, p-value: 1.616e-06

ANOVA: Example Oxygen uptake

```
anova(Imoxy)

Analysis of Variance Table

Response: oxy

Df Sum Sq Mean Sq F value Pr(>F)

time 1 513.84 513.84 41.978 1.616e-06 ***

Residuals 22 269.30 12.24

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

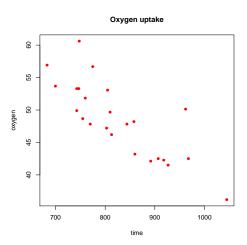
Exercise: Oxygen Uptake

Exercise

For the oxygen uptake data, test the significance of the slope parameter at the 0.1% significance level.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 19/154

Simple linear regression: Example Oxygen uptake



Peter Green (Bristol) Data Analysis I AIMS Cameroon 20/154

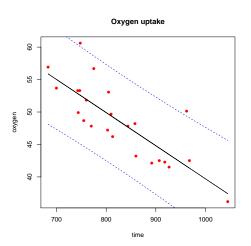
Simple linear regression: Example Oxygen uptake

```
lm(formula = oxv \sim time)
                 Min
                            1Q
                                  Median
                                               3Q
                                                       Max
Residuals:
                       -2 6422
             -3 6461
                                 -0.6792
                                           1.0620
                                                    8 4545
Coefficients:
                         Std. Error t value
              Estimate
                                                   Pr(>|t|)
             90.69476
                          6.54324 13.861
                                              2.38e-12 ***
 (Intercept)
                          0.00787 -6.479
              -0.05099
                                              1.62e-06 ***
 time
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.499 on 22 degrees of freedom
```

Multiple R-squared: 0.6561, Adjusted R-squared: 0.6405 F-statistic: 41.98 on 1 and 22 DF, p-value: 1.616e-06

Peter Green (Bristol) Data Analysis I AIMS Cameroon 21/154

Prediction: Oxygen Uptake Exercise



Prediction: Oxygen Uptake Exercise

Exercise

For the oxygen uptake data, use the simple linear regression model to predict the maximum volume of oxygen uptake in the blood for for 3 individuals that take 750, 850 and 950 seconds to run 2 miles. Give a 95% confidence interval for these predictions.

ANOVA: Example Oxygen uptake

```
anova(Imoxy)

Analysis of Variance Table

Response: oxy

Df Sum Sq Mean Sq F value Pr(>F)

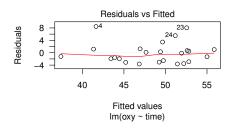
time 1 513.84 513.84 41.978 1.616e-06 ***

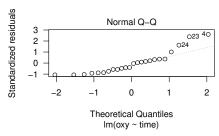
Residuals 22 269.30 12.24

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Peter Green (Bristol) Data Analysis I AIMS Cameroon 24/154

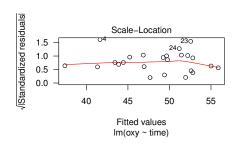
Residuals Analysis: Oxygen uptake

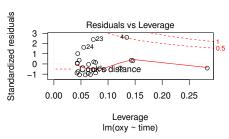




25/154

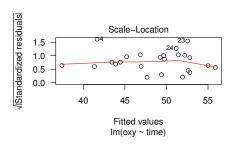
Residuals Analysis: Oxygen uptake





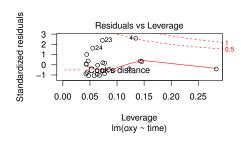
Scale-location

Standardised residuals should be within (-2,2) range.



Residuals versus Leverage

Tells us influential variables. If Cook's distance $D_i > 0.5$ we must be concerned and if $D_i > 1$ check the variable.



Peter Green (Bristol) Data Analysis I AIMS Cameroon 28/154

3. Linear models: Introduction

Linear models are statistical models where the expected response is a linear function of parameters – it is a very large class of models that includes many simpler models (such as linear regression and analysis of variance) as important special cases

- systematic treatment
 - model formulation in various ways
 - least squares estimation
 - optimality of least squares
 - connection with maximum likelihood
 - model adequacy
- applications, including to regression and factorial experiments
- demonstrations and practical work using R

The kyphosis data frame has 81 rows and 4 columns, data on children who have had corrective spinal surgery

Kyphosis - a factor with levels absent present indicating if a kyphosis (a type of deformation) was present after the operation.

Age - in months

Number - the number of vertebrae involved

Start - the number of the first (topmost) vertebra operated on.

```
head(kyphosis)
```

	Kyphosis	Age	Number	Start
1	absent	71	3	5
2	absent	158	3	14
3	present	128	4	5
4	absent	2	5	1
5	absent	1	4	15
6	absent.	1	2.	16

The oxygen data frame has 24 rows and 2 columns, data on maximal oxygen uptake in active military personnel during treadmill running

For each of 24 males, these variables were measured: VO2max - the maximum volume of oxygen uptake in the blood.

time - time taken to run 2 miles (in seconds)

```
> head(oxygen)
VO2max time
1 42.3 918
2 53.1 805
3 42.1 892
4 50.1 962
5 42.5 968
6 42.5 907
```

Peter Green (Bristol) Data Analysis I AIMS Cameroon 31/154

The rubber data frame has 30 rows and 3 columns. Physical properties of 30 rubber samples. Abrasion is expensive to determine, so there is interest in predicting it from Hardness and Tensile.

Abrasion : abrasion loss (g/hp-hour) Hardness : hardness (deg shore) Tensile : tensile strength (kg/sqcm)

```
> head(rubber)
```

	Abrasion	Hardness	Tensile
1	372	45	162
2	206	55	233
3	175	61	232
4	154	66	231
5	136	71	231
6	112	71	237

Peter Green (Bristol) Data Analysis I AIMS Cameroon 32/154

The cabbages data frame shows the results of a field trial on the cultivation of cabbages, giving the yields in each plot.

Cabbage yields

396	559	417	465	312
399	498	442	590	438
610	596	538	568	346

Peter Green (Bristol) Data Analysis I AIMS Cameroon 33/154

The potatoes data frame shows the results of a field trial on the cultivation of potatoes, giving the yields in each plot and the levels of nitrate and phosphate fertilizers applied to the plot.

Potato yields

416	282	646	384	466	420
high	low	high	low	low	high
low	low	high	mid	high	mid
504	571	334	323	594	326
low	high	high	low	high	low
high	high	low	low	mid	mid
390	488	422	439	617	366
low	high	low	low	high	high
low	mid	mid	high	high	low
652	415	483	505	411	259
high	high	low	high	low	low
high	low	high	mid	mid	low
527	475	481	448	432	505
low	low	high	high	low	high
mid	high	mid	low	low	high
633	489	384	620	452	500
high	low	low	high	high	low
mid	mid	low	high	low	high

Key:

Yield nit phos

Motivation: data sets and basic ideas

- structure and relationships
- response and explanatory variables
- quantitative and qualitative (categorical, factor) variables
- statistical modelling
- experiment and observation
- causation
- estimation, confidence intervals, testing
- prediction

Linear models play a central role in theoretical and applied statistics

- in practice a major part of the basic toolkit
- pedagogically a pattern for other techniques

4. Model formulation

Linear models can be formulated or specified in various ways. It is important to be able to translate models fluently from one specification to another.

Responses are known linear functions of unknown parameters, plus an error term. In matrix/vector notation:

$$\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where **Y** is $n \times 1$, and **X** is $n \times p$, where p < n.

The *response vector* \mathbf{Y} is assumed known (observed); the *model* or *design* matrix X is also known, comprising observed explanatory variables or experimental settings. The parameter vector $\boldsymbol{\beta}$ is the focus of our interest, whether it is to be estimated, or some other inference carried out on it.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 36/154

$$\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

or, spelling it out:

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

Quite often, the model includes a constant or intercept term, which we will may refer to as column 0:

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1k} \\ \vdots & & & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

Here, p is k + 1.

Matrix notation is convenient for developing the general theory, but specific models are usually specified either in ordinary *algebraic notation* or in the mnemonic *model expression* notation, devised by Wilkinson and Rogers, that is used in many computer systems, including **R**.

Let us illustrate this with examples.

a. Simple linear regression

Algebraic notation:

$$Y_i = \alpha + \beta x_i + \epsilon_i, i = 1, 2, \dots, n$$

Matrix formulation: $\mathbf{Y} = X\beta + \varepsilon$ as usual, with

$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \quad \beta = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Model expression: Y \sim x (or, more commonly, we would use self-explanatory names for the variables, e.g. <code>cholesterol</code> \sim age). Note that the intercept is not mentioned, but is included by default.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 39/154

b. Multiple linear regression

Algebraic notation:

$$Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i, i = 1, 2, ..., n$$

Matrix formulation:

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} \\ \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} \end{pmatrix} \quad \beta = \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

Model expression: (e.g.)

Abrasion ∼ Hardness+Tensile

Peter Green (Bristol) Data Analysis I AIMS Cameroon 40/154

c. Linear regression without an intercept

Algebraic notation:

$$Y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i, i = 1, 2, ..., n$$

Matrix formulation:

$$X = \begin{pmatrix} x_{11} & x_{12} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{pmatrix} \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

Model expression: (e.g.)

Abrasion \sim Hardness+Tensile-1

41/154

d. Linear regression with functions and combinations of explanatory variables

Algebraic notation:

$$Y_i = \alpha + \beta_1 x_{i1} + \beta_2 \log x_{i2} + \beta_3 x_{i1} \sin(x_{i2}) + \epsilon_i$$

Matrix formulation:

$$X = \begin{pmatrix} 1 & x_{11} & \log(x_{12}) & x_{11}\sin(x_{12}) \\ \vdots & & \vdots \\ 1 & x_{n1} & \log(x_{n2}) & x_{n1}\sin(x_{n2}) \end{pmatrix} \quad \beta = \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$$

Model expression: (e.g.)

Abrasion ~ Hardness+log(Tensile) +Hardness:sin(Tensile)

42/154

e. Factor variables

Algebraic notation:

$$Y_i = \alpha_{s_i} + \epsilon_i, i = 1, 2, \dots, n$$

where $s_i \in \{1, 2, ..., k\}$ is an observed factor (that is, a qualitative variable). Matrix formulation:

$$X = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \quad \beta = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix}$$

The columns of X are often called *dummy variables*; they are not observed numbers, but indicators of which component of β enters into the formula for that observation.

Model expression: (e.g.)

lifetime ∼ make

Such models are also often expressed in a double-subscript notation:

$$Y_{ij} = \alpha_i + \epsilon_{ij}, j = 1, 2, \dots, n_i; i = 1, 2, \dots, k$$

where $n = \sum_{i=1}^{k} n_k$. This is the same model in a different notation; **Y** is not a

matrix, but a vector:
$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_{11} \\ \vdots \\ \mathbf{Y}_{1n_1} \\ \mathbf{Y}_{21} \\ \vdots \\ \mathbf{Y}_{kn_k} \end{pmatrix}$$

f. Two factors: row+column model

Algebraic notation (with double subscripts):

$$Y_{ij} = \alpha_i + \beta_j + \epsilon_{ij}, i = 1, 2, \dots, r; j = 1, 2, \dots, c$$

Matrix formulation:

$$X = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} & I \\ \vdots & & & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1} & I \end{pmatrix} \quad \beta = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_r \\ \beta_1 \\ \vdots \\ \beta_c \end{pmatrix}$$

In X, each 1 and 0 is a c-vector of 1's and 0's, respectively, and each I is the $c \times c$ identity matrix. There are I rows of these blocks, so I is I is the I that we return to this set-up later, and use a slightly different notation. Model expression: (e.g.)

Yield ∼ Site+Variety

Peter Green (Bristol) Data Analysis I AIMS Cameroon

45/154

g. Regression, with factor variables too

Algebraic notation:

$$Y_i = \alpha_{s_i} + \beta x_i + \epsilon_i, i = 1, 2, \dots, n$$

where $s_i \in \{1, 2, ..., k\}$ is an observed factor, and x_i an ordinary numerical variable. Matrix formulation:

$$X = \begin{pmatrix} 1 & 0 & \cdots & 0 & x_1 \\ 1 & 0 & \cdots & 0 & x_2 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 & x_n \end{pmatrix} \quad \beta = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \\ \beta \end{pmatrix}$$

(assuming $s_1 = s_2 = 1$ and $s_n = k$).

Model expression: (e.g.)

lifetime ∼ make+speed

In double-subscript notation:

$$Y_{ij} = \alpha_i + \beta x_{ij} + \epsilon_{ij}, j = 1, 2, ..., n_i; i = 1, 2, ..., k$$

Note that this specifies several parallel regression lines.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 46/154

h. Regression, with factor variables and interaction

Algebraic notation:

$$Y_i = \alpha_{s_i} + \beta_{s_i} x_i + \epsilon_i, i = 1, 2, \dots, n$$

where $s_i \in \{1, 2, ..., k\}$ is an observed factor.

Model expression: (e.g.)

lifetime ~ make*speed or, equivalently, lifetime ~ make*speed+make:speed

In double-subscript notation:

$$Y_{ij} = \alpha_i + \beta_i X_{ij} + \epsilon_{ij}, j = 1, 2, ..., n_i; i = 1, 2, ..., k$$

Note that this specifies several *separate* regression lines: they need no longer be parallel.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 47/154

Alternative parameterisations

There are always several ways to parameterise a model, and when interpreting parameters or their estimates, it is important to bear the parameterisation in mind.

For example

$$Y_i = \alpha + \beta x_i + \epsilon_i, i = 1, 2, \dots, n$$

and
$$Y_i = \alpha^* + \beta (x_i - \overline{x}) + \epsilon_i, i = 1, 2, \dots, n$$

are identical models, where $\alpha^{\star}=\alpha+\beta\overline{x}$. While β is the gradient in both models, the "intercepts" α and α^{\star} are different numbers with different meanings.

This issue is especially important with factor variables. For example in case (e) above, with two levels of the factor s_i as in the lathe example, we might have chosen $\alpha_1 = \mu$ and $\alpha_2 = \mu + \delta$, so that δ is the *difference* in mean lifetime between the two makes of lathe. The X matrix would then be of the form

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 instead of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Mathematically, two *X* matrices represent the same model if and only if they have the same *column spaces*.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 48/154

Summary

- Note the general patterns, so that you can put richer models together using these ideas in a modular way.
- A numerical explanatory variable contributes one column to X; a factor contributes as many columns as there are levels of the factor.
- We use the + symbol to assemble sets of columns together, corresponding to adding in successive terms in the model.
- Learn the interpretation of *interaction* (symbolised by :) between two factors, and between a factor and a numerical variable.
- A*B is short for A+B+A:B
- The individual components of β might correspond to other greek letters in the algebraic specification of the model.
- The individual components of Y and ε might have multiple subscripts in the algebraic specification of the model.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 49/154

5. Least squares estimation

Fitting a linear model means estimating the regression coefficient parameter β – we usually do this using the principle of least squares. An advantage of this principle is that it makes sense without having to assume a statistical model for the errors ε .

The idea is to choose that value of β , say $\widehat{\beta}$, such that the *residual sum of squares* $S(\beta)$ is minimised, where

$$S(eta) = \sum_{i=1}^n \epsilon_i^2 = eta^T eta = ||eta||^2$$

where

$$\varepsilon = \mathbf{Y} - X\beta$$

We can find a compact general expression for the solution to this minimisation problem, if we make a simplifying assumption.

Until further notice we assume:

The matrix X is of full rank. This is equivalent to making any of these assertions (recalling that p < n):

- The rank of X is p
- The columns of X are linearly independent
- X^TX is non-singular

(Note that this is a sensible assumption, since if it was not true, $X\beta = X\beta^*$ would not imply $\beta = \beta^*$, so that you could not expect to choose between β and β^* using data $Y = X\beta + \varepsilon$. In this case, we say β is *not identifiable*.)

Which of the cases (a) to (h) in Section 1 satisfy this assumption?

Let $\hat{\beta}$ satisfy

$$(X^T X)\widehat{\boldsymbol{\beta}} = X^T \mathbf{Y}. \tag{1}$$

52/154

We shall prove that any such $\widehat{\beta}$ minimises $S(\beta)$.

Note that $S(\beta) = (Y - X\beta)^T (Y - X\beta)$. Let δ be any ρ -vector. Then

$$\mathcal{S}(\widehat{oldsymbol{eta}} + oldsymbol{\delta}) - \mathcal{S}(\widehat{oldsymbol{eta}})$$

$$= (\mathbf{Y} - X\widehat{\boldsymbol{\beta}} - X\boldsymbol{\delta})^{\mathsf{T}} (\mathbf{Y} - X\widehat{\boldsymbol{\beta}} - X\boldsymbol{\delta}) - (\mathbf{Y} - X\widehat{\boldsymbol{\beta}})^{\mathsf{T}} (\mathbf{Y} - X\widehat{\boldsymbol{\beta}})$$

$$=-2(X\boldsymbol{\delta})^T(\boldsymbol{Y}-X\widehat{\boldsymbol{\beta}})+(X\boldsymbol{\delta})^T(X\boldsymbol{\delta})$$

Simplifying, the first term on the right is $-2\delta^T(X^TY - (X^TX)\widehat{\beta}) = 0$ by assumption (1), for all δ and Y.

The second term on the right is the sum of squares of the elements of $X\delta$, so is non-negative, and is 0 if and only if $X\delta = 0$. Since X is full rank, this is true if and only if $\delta = 0$.

Thus, $S(\widehat{\beta} + \delta) - S(\widehat{\beta}) \ge 0$, with equality if and only if $\delta = 0$. So any $\widehat{\beta}$ satisfying (1) minimises $S(\beta)$.

Since X^TX is nonsingular, the only solution is $\widehat{\beta} = (X^TX)^{-1}X^TY$; this is therefore the unique least squares estimator.

Fitted values and residuals

Having obtained the estimates $\widehat{\beta}$, the predicted or *fitted values* of the response variable are obtained by substitution:

$$\widehat{\mathbf{Y}} = X\widehat{\boldsymbol{\beta}} = X(X^TX)^{-1}X^T\mathbf{Y} = H\mathbf{Y}$$

where $H = X(X^TX)^{-1}X^T$ is called the hat matrix (it 'puts the hat' on Y). Similarly, the vector of *residuals* is the difference

$$\mathbf{e} = \mathbf{Y} - \widehat{\mathbf{Y}} = (I - X(X^TX)^{-1}X^T)\mathbf{Y} = (I - H)\mathbf{Y}$$

where $I = I_n$ is the order n identity matrix. Note that both the fitted values and the residuals are, like the least squares estimates $\widehat{\beta}$, linear functions of Y.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 54/154

The residual sum of squares is

$$\mathbf{e}^{\mathsf{T}}\mathbf{e} = S(\widehat{\boldsymbol{\beta}}) = \mathbf{Y}^{\mathsf{T}}(I-H)^{\mathsf{T}}(I-H)\mathbf{Y} = \mathbf{Y}^{\mathsf{T}}(I-H)\mathbf{Y}$$

since, as you can show easily:

- H is symmetric: $H^T = H$
- H is idempotent: $H^2 = H$, and so:
- $(I-H)^T(I-H) = (I-H)$

55/154

Fitting linear models in R

The **R** command for fitting a linear model is lm(); the only compulsory argument is the *formula* of the model to be fitted – in the model expression syntax we saw in Section 1. For example,

```
lm(Cholesterol~Age)
```

The variables used in the formula may be either (i) in the current workspace as ordinary variables, (ii) in a data frame that has been previously attached using the command, e.g. attach(lipid), or (iii) in a data frame specified as the 2nd argument of lm(), e.g.

```
lm(Cholesterol~Age,lipid)
```

It produces brief output, the least squares estimates.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 56/154

More comprehensive output is obtained by assigning the output of lm() to a variable, with a name of your choosing, e.g.

```
fit1<-lm(Cholesterol~Age)
```

and then processing the result.

The output from lm() is a list with 12 named components, e.g.

fit1\$residuals; you can see all the names with, e.g.,

names(fit1)

You can look at the values of these components, as usual, by typing the name, e.g. fit1\$coef gives the least squares estimates.

6. Statistical performance

In this section, we start to make statistical assumptions about our model, but only about means and variances, not full probability distributions. Remarkably, this is enough to demonstrate a particular kind of optimality of least squares estimators, in the form of a famous result known as the Gauss-Markov theorem.

Mean and variance assumptions

In our linear model

$$\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

from now on, we assume that

- $E(\varepsilon) = \mathbf{0}$ (or, equivalently, $E(Y) = X\beta$): that is, the observations are *unbiased*;
- $var(\epsilon_i) = \sigma^2$ for all i (or, equivalently, $var(Y_i) = \sigma^2$ for all i): that is, the observations have *equal variance*;
- $cov(\epsilon_i, \epsilon_j) = 0$ for all $i \neq j$ (or, equivalently, $cov(Y_i, Y_j) = 0$ for all $i \neq j$): that is, the observations are *uncorrelated*.

The 2nd and 3rd items are the same as saying that $var(\varepsilon) = var(Y) = \sigma^2 I_n$.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 59/154

Mean and variance of the least squares estimator

We find that

$$E(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$$
 and $var(\widehat{\boldsymbol{\beta}}) = \sigma^2 (X^T X)^{-1}$

Proof

We will be using the results that

for any random *n*-vector \mathbf{Y} , and any constant $m \times n$ matrix A, $E(A\mathbf{Y}) = AE(\mathbf{Y})$ and $var(A\mathbf{Y}) = Avar(\mathbf{Y})A^T$.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 60/154

Recall that under the full-rank assumption, $\hat{\beta} = (X^T X)^{-1} X^T Y$. Then

$$E(\widehat{\boldsymbol{\beta}}) = E((X^T X)^{-1} X^T \mathbf{Y}) = (X^T X)^{-1} X^T E(\mathbf{Y})$$
$$= (X^T X)^{-1} X^T X \boldsymbol{\beta} = \boldsymbol{\beta}$$
$$\operatorname{var}(\widehat{\boldsymbol{\beta}}) = \operatorname{var}((X^T X)^{-1} X^T \mathbf{Y})$$

and

$$\operatorname{var}(\widehat{\beta}) = \operatorname{var}((X^T X)^{-1} X^T Y)$$

$$= (X^T X)^{-1} X^T \operatorname{var}(Y) [(X^T X)^{-1} X^T]^T$$

$$= (X^T X)^{-1} X^T [\sigma^2 I_n] X (X^T X)^{-1} = \sigma^2 (X^T X)^{-1}$$

These results allow us to say that least squares estimates are unbiased, and to write down their standard errors

$$\sqrt{\operatorname{var}(\widehat{\beta}_j)} = \sigma^2[(X^T X)^{-1}]_{jj}.$$

Confidence intervals, etc., based on this will be in the next section. But even without the further assumptions made there, we can claim a remarkable optimality for least squares estimation; the variance of the estimator is the *smallest possible* (among linear unbiased estimators).

Theorem (Gauss-Markov)

Suppose that $E(\mathbf{Y}) = X\beta$ and $var(\mathbf{Y}) = \sigma^2 I_n$. Let \mathbf{c} be a fixed p-vector. Then $\mathbf{c}^T \hat{\boldsymbol{\beta}}$ is an unbiased estimator of $\mathbf{c}^T \boldsymbol{\beta}$, and has variance smaller than any other estimator that is linear (in \mathbf{Y}) and unbiased.

Proof

$$E(\mathbf{c}^{\mathsf{T}}\widehat{\boldsymbol{\beta}}) = \mathbf{c}^{\mathsf{T}}E(\widehat{\boldsymbol{\beta}}) = \mathbf{c}^{\mathsf{T}}\boldsymbol{\beta}.$$

Also, $\mathbf{c}^T \widehat{\boldsymbol{\beta}} = \mathbf{c}^T (X^T X)^{-1} X^T \mathbf{Y}$ is clearly linear in \mathbf{Y} . Let $\mathbf{\lambda}^T \mathbf{Y}$ be any other linear unbiased estimator. Then

$$\boldsymbol{c}^T \boldsymbol{\beta} = E(\boldsymbol{\lambda}^T \boldsymbol{Y}) = \boldsymbol{\lambda}^T E(\boldsymbol{Y}) = \boldsymbol{\lambda}^T X \boldsymbol{\beta}$$

holds for all β , that is, $\boldsymbol{c}^T = \boldsymbol{\lambda}^T \boldsymbol{X}$.

63/154

So

$$\operatorname{var}(\boldsymbol{c}^{T}\widehat{\boldsymbol{\beta}}) = \boldsymbol{c}^{T} \sigma^{2} (X^{T} X)^{-1} \boldsymbol{c} = \boldsymbol{\lambda}^{T} X \sigma^{2} (X^{T} X)^{-1} (\boldsymbol{\lambda}^{T} X)^{T}$$
$$= \sigma^{2} \boldsymbol{\lambda}^{T} X (X^{T} X)^{-1} X^{T} \boldsymbol{\lambda} = \sigma^{2} \boldsymbol{\lambda}^{T} H \boldsymbol{\lambda}$$

Meanwhile,

$$\operatorname{var}(\boldsymbol{\lambda}^T \boldsymbol{Y}) = \boldsymbol{\lambda}^T \sigma^2 \boldsymbol{I}_n \boldsymbol{\lambda} = \sigma^2 \boldsymbol{\lambda}^T \boldsymbol{\lambda}$$

SO

$$\operatorname{var}(\boldsymbol{\lambda}^T \boldsymbol{Y}) - \operatorname{var}(\boldsymbol{c}^T \widehat{\boldsymbol{\beta}}) = \sigma^2 \boldsymbol{\lambda}^T \boldsymbol{\lambda} - \sigma^2 \boldsymbol{\lambda}^T H \boldsymbol{\lambda}$$

$$= \sigma^2 \lambda^T (I_n - H) \lambda = \sigma^2 \lambda^T (I_n - H)^T (I_n - H) \lambda \ge 0$$

as required.

Estimating σ^2

The least squares principle does not tell itself us how to estimate σ^2 . However, we do now have a basis for doing so. Since $\sigma^2 = \text{var}(Y_i)$ and $E(Y_i) = (X\beta)_i$, we would expect the average of the squares of the residuals $Y_i - (X\widehat{\beta})_i$ to be about σ^2 .

In fact (from page 19) the residual sum of squares is $e^T e = S(\widehat{\beta}) = \mathbf{Y}^T (I_n - H) \mathbf{Y}$, and using the result that

For any random vector \mathbf{Y} with $E(\mathbf{Y}) = \mu$ and $var(\mathbf{Y}) = V$, and any constant matrix A, $E(\mathbf{Y}^T A \mathbf{Y}) = \mu^T A \mu + tr(AV)$.

we have

$$E(\mathbf{e}^T\mathbf{e}) = E(\mathbf{Y}^T(I_n - H)\mathbf{Y})$$

$$= (X\beta)^{T}(I_{n} - H)(X\beta) + \operatorname{tr}((I_{n} - H)\sigma^{2}I_{n}) = \sigma^{2}(n - \operatorname{tr}(H))$$

since HX = X (check!).

Estimating σ^2 [2]

But

$$tr(H) = tr(X(X^TX)^{-1}X^T)$$

$$=\operatorname{tr}(X^{T}X(X^{T}X)^{-1})=\operatorname{tr}(I_{p})=p,$$

using the fact that tr(AB) = tr(BA) for all conformable matrices A, B. Thus.

$$\widehat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n - p}$$

("RSS \div df") is an unbiased estimator of σ^2 .

66/154

Standardised residuals

Although the errors ϵ_i are assumed to have equal variance σ^2 , their estimates, the residuals e_i , do not. In fact,

$$var(e_i) = [var(\boldsymbol{e})]_{ii} = [var((I-H)\boldsymbol{Y})]_{ii}$$

$$= [\sigma^2(I-H)]_{ii} = \sigma^2(1-h_{ii})$$

where h_{ii} are the diagonal elements of H.

Therefore we define *standardised residuals* as $e'_i = e_i/(\widehat{\sigma}\sqrt{1-h_{ii}}), i=1,2,\ldots,n$. These have (approximately) equal variances.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 67/154

Further results from lm()

A more complete printed summary can be obtained by typing, e.g.,

```
summary(fit1)
```

This includes estimates and their standard errors, and some statistics about residuals and about the fit.

Four diagnostic plots are produced if you type, e.g.,

```
plot(fit1)
```

(If you have first typed par (mfrow=c(2,2)) they will be displayed as a 2×2 array.)

Peter Green (Bristol) Data Analysis I AIMS Cameroon 68/154

Diagnostic plots

The four plots are

- Fitted values vs. residuals: a scatter plot of (Yi, ei) (a pattern indicates that there is systematic under-fitting: do you need to fit other explanatory variables?)
- Normal Q-Q plot: a Q-Q plot of the standardised residuals e'_i (departures from a straight line suggest that the errors are not normally distributed)
- Scale-Location plot: a scatter plot of $(\widehat{Y}_i, \sqrt{|e'_i|})$ (a more sensitive version of the fitted value/residual plot: does the variance of the errors vary?)
- Ocok's distance plot: a plot of $e_i'^2 h_{ii}/(p(1-h_{ii}))$ against i (Cook's distance is a measure of how much the overall fit would change if observation i was deleted)

Prediction

We often fit a linear model in order to make predictions of the response variable for various future choices of the explanatory variable(s). The function predict() is provided for this. For example,

```
predict(fit1, data.frame(Age=c(23, 27)))
```

computes the expected values of Cholesterol for Age equal to 23 and 27.

7. Normal theory assumptions

Now for the first time, we make assumptions about the probability distribution of our responses. We assume more, and we get more - we can derive inferential procedures like confidence intervals for parameters, make probabilistic predictions about future observations, and test hypotheses about parameter values and about model adequacy.

We will also find an intimate connection between least squares and maximum likelihood.

Assumption

In addition to the assumptions of Section 3, we now assume that the $\{Y_i\}$ are independently normally distributed. That is, $Y_i \sim N(\mathbf{x}_i^T \boldsymbol{\beta}, \sigma^2)$, independently, or in brief, $\mathbf{Y} \sim N_n(X\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$.

(Here \mathbf{x}_i is the i^{th} row of X; so $\mathbf{x}_i^T \boldsymbol{\beta} = (X\boldsymbol{\beta})_i$.)

Least squares and maximum likelihood

Since the observations are independent, the likelihood is just the product of their density functions, so

$$L = L(\boldsymbol{\beta}, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (Y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2\right\}$$

Thus the log-likelihood is

$$\ell = \ell(\beta, \sigma^2) = -n\log\sqrt{2\pi} - n\log\sigma - \frac{1}{2\sigma^2}\sum_{i=1}^n (Y_i - \boldsymbol{x}_i^T\beta)^2$$

$$= -n\log\sqrt{2\pi} - n\log\sigma - \frac{1}{2\sigma^2}S(\beta),$$

where

$$S(\beta) = \mathbf{e}^T \mathbf{e} = (\mathbf{Y} - X\beta)^T (\mathbf{Y} - X\beta)$$

is the usual sum of squares.

Hence for any σ , maximising the likelihood corresponds exactly to minimising the sum of squares of the residuals. That is, for β , least squares estimation and maximum likelihood estimation is the same thing. (Note that the normal distribution assumption is essential for this conclusion.)

Since the least squares estimates do not involve σ^2 , you get the same estimators on *simultaneously* maximising over β and σ^2 .

This connection provides a powerful additional justification for using least squares estimators.

Differentiating the log-likelihood with respect to σ , and setting to zero, we get

$$-\frac{n}{\sigma} + \frac{S(\beta)}{\sigma^3} = 0$$

so we immediately obtain the maximum likelihood estimator of σ^2 as $S(\widehat{\beta})/n$. Note that this is *different* from the least squares estimator $\widehat{\sigma}^2$, which has the divisor (n-p); in practice we always use the latter, the unbiased estimator.

Joint distribution of $\widehat{\beta}$ and $S(\widehat{\beta})$

Various inferential procedures can be derived from the following result:

If
$$\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$$
 then

(a)
$$\widehat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1})$$

(b)
$$S(\widehat{\boldsymbol{\beta}})/\sigma^2 \sim \chi^2_{n-p}$$

(c) $\widehat{\beta}$ and $S(\widehat{\beta})$ are independent.

Note that we already knew the mean and variance in (a) and the mean in (b) – they did not require normality.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 76/154

Corollary

For any fixed p-vector c, we have

$$\frac{\boldsymbol{c}^T \widehat{\boldsymbol{\beta}} - \boldsymbol{c}^T \boldsymbol{\beta}}{\widehat{\sigma} \sqrt{\boldsymbol{c}^T (X^T X)^{-1} \boldsymbol{c}}} \sim t_{n-p}$$

Proof

From (a), $\mathbf{c}^T \widehat{\boldsymbol{\beta}} \sim N(\mathbf{c}^T \boldsymbol{\beta}, \sigma^2 \mathbf{c}^T (X^T X)^{-1} \mathbf{c})$, so

$$\frac{\boldsymbol{c}^T \widehat{\boldsymbol{\beta}} - \boldsymbol{c}^T \boldsymbol{\beta}}{\sigma \sqrt{\boldsymbol{c}^T (X^T X)^{-1} \boldsymbol{c}}} \sim N(0, 1)$$
 (2)

From (b), $\widehat{\sigma}^2/\sigma^2 = S(\widehat{\beta})/((n-p)\sigma^2) \sim \chi^2_{n-p}/(n-p)$, and this is independent of (2) by (c), so we have our result, by the definition of the *t* distribution:

"
$$t_{
u} = N(0,1)/\sqrt{\chi_{
u}^2/
u}$$
 "

Thus, for example, a $100(1-\alpha)\%$ confidence interval for $\mathbf{c}^T\beta$ is given by

$$[\boldsymbol{c}^T\widehat{\boldsymbol{\beta}} - t_{n-p}(\alpha/2)\widehat{\boldsymbol{\sigma}}\omega, \boldsymbol{c}^T\widehat{\boldsymbol{\beta}} + t_{n-p}(\alpha/2)\widehat{\boldsymbol{\sigma}}\omega]$$

where $\omega = \sqrt{\boldsymbol{c}^T (X^T X)^{-1} \boldsymbol{c}}$.

Example 1: confidence interval

A $100(1-\alpha)\%$ confidence interval for β_i is given by

$$[\widehat{\beta}_j - t_{n-p}(\alpha/2)\widehat{\sigma}\omega, \widehat{\beta}_j + t_{n-p}(\alpha/2)\widehat{\sigma}\omega]$$

where now $\omega = \sqrt{[(X^TX)^{-1}]_{jj}}$.

You can reject the hypothesis that $\mathbf{c}^T \boldsymbol{\beta} = \mathbf{c}^T \boldsymbol{\beta}_0$ at level α , against a two-sided alternative, if

$$\left|\frac{\boldsymbol{c}^T\widehat{\boldsymbol{\beta}}-\boldsymbol{c}^T\boldsymbol{\beta}_0}{\widehat{\boldsymbol{\sigma}}\sqrt{\boldsymbol{c}^T(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{c}}}\right| > t_{n-p}(\alpha/2)$$

A future observation with explanatory variables \boldsymbol{x}_{\star} will be $\boldsymbol{Y}_{\star} = \boldsymbol{x}_{\star}^{T}\boldsymbol{\beta} + \boldsymbol{\varepsilon}_{\star}$; this has least squares estimate $\boldsymbol{x}_{\star}^{T}\widehat{\boldsymbol{\beta}}$. The error has variance $\sigma^{2}\boldsymbol{x}_{\star}^{T}(X^{T}X)^{-1}\boldsymbol{x}_{\star} + \sigma^{2}$. A 100(1 – α)% prediction interval for \boldsymbol{Y}_{\star} is

$$[\mathbf{x}_{\star}^{\mathsf{T}}\widehat{\boldsymbol{\beta}} - t_{n-p}(\alpha/2)\widehat{\boldsymbol{\sigma}}\omega, \mathbf{x}_{\star}^{\mathsf{T}}\widehat{\boldsymbol{\beta}} - t_{n-p}(\alpha/2)\widehat{\boldsymbol{\sigma}}\omega]$$

where this time $\omega = \sqrt{1 + \boldsymbol{x}_{\star}^T (X^T X)^{-1} \boldsymbol{x}_{\star}}$.

8. Model choice in linear models

We have so far regarded the matrix X, containing numerical explanatory variables, and 0/1 indicators for factor levels, as fixed and given. In practice, very often, choice of which explanatory variables and factors to include is at the discretion of the analyst. As we have seen, it is easy enough in a system like \mathbf{R} to make several different choices, and fit them all. But what criteria should be used to choose between these models?

We wish to avoid

- missing out variables that are important that would incur bias in estimation and prediction
- including variables that have no effect that is a waste of expense, and would lead to inflated estimates of variance of estimates and predictions

The main thing we need is a formal mechanism for determining whether an individual variable, or group of variables, can be dropped from a linear model, without an undue effect on the performance of the model in terms of explaing the variation in Y. This will allow us to make *pairwise* comparisons between models.

We already have a method for testing whether a single variable (component of \mathbf{x}) needs to be included – see Example 2 on page 37 . If we set \mathbf{c} to be the j^{th} unit vector, so $\mathbf{c}^T \boldsymbol{\beta} = \beta_j$, and suppose $(\beta_0)_j = 0$ then we see that you can reject the hypothesis that $\beta_j = 0$ at level α , against a two-sided alternative, if

$$\left|\frac{\widehat{\beta}_j}{\widehat{\sigma}\sqrt{[(X^TX)^{-1}]_{jj}}}\right| > t_{n-p}(\alpha/2)$$

However, this procedure doesn't cover the case where the possible exclusion of several components of \boldsymbol{x} is being considered, since the test for each component assumes the inclusion of all other components.

Analysis of Variance

This is a general term for procedures that give the generalisation of the *t*test that we require.

The basic idea is to *decompose* the variability, measured by sums of squares, among components in \mathbf{Y} into terms attributable to different components of \mathbf{x} . Tests are based on ratios between these sums of squares.

The basic decomposition is obtained from results on page 19:

$$H^{T}H = H^{2} = H$$
 and $(I - H)^{T}(I - H) = (I - H)^{2} = I - H$

thus:

$$I = H + (I - H) = H^{T}H + (I - H)^{T}(I - H)$$

Post- and pre-multiplying by Y:

$$\mathbf{Y}^{\mathsf{T}}\mathbf{Y} = \widehat{\mathbf{Y}}^{\mathsf{T}}\widehat{\mathbf{Y}} + (\mathbf{Y} - \widehat{\mathbf{Y}})^{\mathsf{T}}(\mathbf{Y} - \widehat{\mathbf{Y}})$$

since $\hat{\mathbf{Y}} = H\mathbf{Y}$. In symbols,

$$SS_{T} = SS_{R} + SS_{E}$$

where SS_T , SS_R and SS_E are called the total, regression and residual (or error) sums of squares, respectively. (This is really Pythagoras' theorem!) Because of the special properties of H, each of these terms can be expressed in many equivalent ways.

What we have done is decompose the variation in Y into a term explained by the regression, and an unexplained, or residual, term.

If SS_R is large relative to SS_E , we intuitively conclude that the regression is doing a good job; now we develop a formal test to assess this. We know (slides 27/8) that $E(SS_E) = (n-p)\sigma^2$. Meanwhile,

$$E(SS_{R}) = E(\widehat{\mathbf{Y}}^{T} \widehat{\mathbf{Y}}) = E(\widehat{\boldsymbol{\beta}}^{T} X^{T} X \widehat{\boldsymbol{\beta}})$$
$$= \boldsymbol{\beta}^{T} X^{T} X \boldsymbol{\beta} + \text{tr}[X^{T} X \text{var}(\widehat{\boldsymbol{\beta}})]$$

$$= \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\beta} + \operatorname{tr}[\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \sigma^2 (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1}] = \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{p} \sigma^2$$

So if $\beta = 0$, SS_R/p is another unbiased estimator of σ^2 , and

$$F = \frac{SS_R/p}{SS_E/(n-p)}$$

should be close to 1; if $\beta \neq 0$ it will tend to be larger.

84/154

The *F* test

If we assume, as usual, that $Y \sim N_n(X\beta, \sigma^2 I)$ and that X has full rank p, then

- (a) if $\beta = 0$, $SS_R \sim \sigma^2 \chi_p^2$
- (b) always, $SS_E \sim \sigma^2 \chi_{n-p}^2$
- (c) SS_E and SS_R are independent.

It follows by definition of the F distribution that if $\beta = 0$,

$$F \sim F_{p,n-p}$$

(Actually, regarding (a), in general $(\widehat{\beta} - \beta)^T X^T X (\widehat{\beta} - \beta) \sim \sigma^2 \chi_p^2$, and if $\beta \neq \mathbf{0}$ then SS_R/σ^2 has what we call a non-central χ^2 distribution.)

Peter Green (Bristol) Data Analysis I AIMS Cameroon 85/154

The resulting procedure of calculating the sums of squares and other terms to perform this F test is usually summarised as an ANOVA table:

Source	SS	df	MS	F
Regression on β	SS_{R}	р	$SS_{ m R}/p$	F
Residual	$SS_{\rm E}$	n-p	$SS_{E}/(n-p)$	
Total, uncorrected	SS _T	n		

Correcting for the mean

More often than not, variation in Y is of interest measured from the mean \overline{Y} of Y; SS_R and SS_T are then modified accordingly:

$$SS_{\mathrm{R}}^{\star} = SS_{\mathrm{R}} - n\overline{Y}^{2}$$
 $SS_{\mathrm{T}}^{\star} = SS_{\mathrm{T}} - n\overline{Y}^{2} = \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}.$

The ANOVA table is modified to:

Source	SS	df	MS	F
Regression on β	SS _R [⋆]	p – 1	$SS_{R}^{\star}/(p-1)$	F
Residual	SS_{E}	n-p	$SS_{E}/(n-p)$	
Total, corrected	SS_{T}^{\star}	n – 1		

where now $F \sim F_{p-1,n-p}$

Peter Green (Bristol)

This F ratio is appropriate for testing the hypothesis that $\beta_2 = \beta_3 = \cdots = \beta_p = 0$ in the model

$$Y_i = \sum_{j=1}^p x_{ij}\beta_j + \epsilon_i, i = 1, 2, \dots, n$$

where $x_{i1} = 1$ for all i, so that β_1 is the intercept. We reject that hypothesis at level α if $F > F_{p-1, n-p}(\alpha)$.

Significance of subsets of variables

Having fitted, say, x_1, x_2, \dots, x_p , were x_{q+1}, \dots, x_p really necessary? (In practice, we may re-order variables before posing this question. We suppose that $x_1 \equiv 1$: the model always includes an intercept.) We answer this question by comparing the fits of two models using a significance test. The models are: The **Full** model: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ The **Reduced** model: $\mathbf{Y} = X_1 \beta_1 + \varepsilon$ where we have partitioned $\beta=\left(\begin{array}{c} \beta_1\\ \beta_2 \end{array}\right)$ and $X=[X_1|X_2]$ where β_1 is $q\times 1$, β_2 is $(p-q) \times 1$, X_1 is $n \times q$ and X_2 is $n \times (p-q)$. [NB – be careful, β_1 here is still a vector, the first p components of β , not just the first component. The question: are x_{q+1}, \dots, x_p really necessary? becomes now: can we accept the hypothesis $H_0: \beta_2 = 0$?

Peter Green (Bristol) Data Analysis I AIMS Cameroon 89/154

We fit both models by least squares, and obtain least squares estimates $\widehat{\beta}_F$ and $\widehat{\beta}_{1R}$, and residual sums of squares $SS_{EF} = S(\widehat{\beta}_F)$ and $SS_{ER} = S(\widehat{\beta}_{1R})$. Obviously $SS_{ER} - SS_{EF} >= 0$ – how much larger says how strongly it was worth including the explanatory variables in X_2 . This is the basis of the test – we need to find the distribution of this difference under H_0 . Suppose the full model is true, then

- (a) if H_0 is true, $SS_{\rm ER} SS_{\rm EF} \sim \sigma^2 \chi^2_{p-q}$
- (b) always, $SS_{\rm EF} \sim \sigma^2 \chi^2_{n-p}$
- (c) SS_{EF} and $SS_{ER} SS_{EF}$ are independent.

Them under H_0 ,

$$F = rac{SS_{\text{ER}} - SS_{\text{EF}}}{p - q} \div rac{SS_{\text{EF}}}{n - p} \sim F_{p - q, n - p}$$

and it otherwise tends to be bigger, so we reject H_0 at the significance level α if $F > F_{p-q,n-p}(\alpha)$.

The main part of the ANOVA table becomes:

Source	SS	df
Regression on β_1	$SS_{ m RR}^{\star}$	<u>q – 1</u>
Due to β_2 after β_1	$SS_{ ext{RF}}^{\star} - SS_{ ext{RR}}^{\star}$	p-q
Regression on β	$SS_{ m RF}^{\star}$	<i>p</i> – 1
Residual	$SS_{ ext{EF}}$	n-p
Total, corrected	SS_{T}^{\star}	<i>n</i> − 1

using the fact that $SS_{\text{T}}^{\star} = SS_{\text{RF}}^{\star} + SS_{\text{EF}} = SS_{\text{RR}}^{\star} + SS_{\text{ER}}$, so that $SS_{\text{ER}} - SS_{\text{EF}} = SS_{\text{RF}}^{\star} - SS_{\text{RR}}^{\star}$.

If we need to do the computations by hand, usually it is easiest to compute $SS_{\rm T}^{\star}$, $SS_{\rm RR}^{\star}$ and $SS_{\rm RF}^{\star}$ (as sums of squares of the responses, and of the fitted values under each model, all 3 being corrected by subtracting $n\overline{Y}^2$), then the other sums of squares by subtraction.

That is, $SS_{\rm T}^{\star} = \mathbf{Y}^T \mathbf{Y} - n \overline{\mathbf{Y}}^2$ and

$$SS_{RR}^{\star} = \widehat{\boldsymbol{Y}}_{1}^{T}\widehat{\boldsymbol{Y}}_{1} - n\overline{Y}^{2}$$
 $SS_{RF}^{\star} = \widehat{\boldsymbol{Y}}^{T}\widehat{\boldsymbol{Y}} - n\overline{Y}^{2}$

91/154

where \hat{Y}_1 and \hat{Y} are the fitted values from the reduced and full models.

Peter Green (Bristol) Data Analysis I AIMS Cameroon

The anova () function in \mathbf{R} does all the work for you. Note that it displays the regression sums of squares for the model with just the 1st term, then the extra attributable to each additional term, and finally the residual sum of squares. That is, numbering the models in order of the terms included as $1, 2, \ldots, m$,

 $SS_{R1}^{\star}, SS_{R2}^{\star} - SS_{R1}^{\star}, \dots, SS_{Rm}^{\star} - SS_{R(m-1)}^{\star}, SS_{Em}$

the displayed sums of squares are

The F tests performed by the anova () function thus relate to the successive inclusion of each term sequentially.

The order in which terms are included is therefore important. The only exception to this is when the terms in the linear model are *orthogonal*.

Orthogonality

Suppose that X can be partitioned as $X = [X_1 | X_2 | \cdots | X_t]$ where $X_i^T X_j = 0$ for all $i \neq j$, each X_i representing a block of $p_i \geq 1$ columns. Then

$$X^{T}X = \begin{pmatrix} X_{1}^{T}X_{1} & X_{1}^{T}X_{2} & \cdots & X_{1}^{T}X_{t} \\ X_{2}^{T}X_{1} & X_{2}^{T}X_{2} & \cdots & X_{2}^{T}X_{t} \\ \vdots & \vdots & & \vdots \\ X_{t}^{T}X_{1} & X_{t}^{T}X_{2} & \cdots & X_{t}^{T}X_{t} \end{pmatrix}$$

So

$$(X^T X)^{-1} = \begin{pmatrix} (X_1^T X_1)^{-1} & 0 & \cdots & 0 \\ 0 & (X_2^T X_2)^{-1} & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & (X_t^T X_t)^{-1} \end{pmatrix}$$

and finally

$$\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{Y} = \begin{pmatrix} (X_1^T X_1)^{-1} X_1^T \mathbf{Y} \\ \vdots \\ (X_t^T X_t)^{-1} X_t^T \mathbf{Y} \end{pmatrix}$$

93/154

Thus each block of parameters is estimated just as if the other blocks were not present in the model.

Furthermore, since $var(\widehat{\beta}) = \sigma^2(X^TX)^{-1}$, estimates in different blocks are uncorrelated.

Finally, the regression sums of squares relate simply. For a model including blocks $k \in T \subset \{1, 2, ..., t\}$,

$$SS_{R} = \left(\sum_{k \in T} X_{k} \widehat{\beta}_{k}\right)^{T} \sum_{k \in T} X_{k} \widehat{\beta}_{k} = \sum_{k \in T} \widehat{\beta}_{k}^{T} X_{k}^{T} X_{k} \widehat{\beta}_{k}$$

Taking the Full model to be any model including block j, and the Reduced model to be the same but excluding block j, then $SS_{RF} - SS_{RR} = \widehat{\beta}_j^T X_j^T X_j \widehat{\beta}_j$.

The ANOVA table can then be unambiguously constructed as

Source	SS	df
Regression on β_1	$\widehat{\boldsymbol{\beta}}_1^T \boldsymbol{X}_1^T \boldsymbol{X}_1 \widehat{\boldsymbol{\beta}}_1$	p ₁
:	:	:
Regression on β_t	$\widehat{m{eta}}_t^{T} \mathbf{X}_t^{T} \mathbf{X}_t \widehat{m{eta}}_t$	p_t
Residual	$SS_{ m EF}$	n-p
Total, uncorrected	SS_{T}	n

Sketch proof of χ^2 and F results

The results quoted in slides 35, 42 and 46, and many other results used for testing hypotheses in normal linear models, follow from the following proposition.

Suppose $Y \sim N_n(\mu, \sigma^2 I)$, and that A_1, A_2, \dots, A_m are real $n \times n$ matrices such that

- $\bullet \sum_{r=1}^m A_r = I_n$
- $A_r^T A_s = 0$ for all $r \neq s$

These are the same as $\sum_{r=1}^{m} A_r \mathbf{y} = \mathbf{y}$ and $(A_r \mathbf{y})^T (A_s \mathbf{y}) = 0$ for all $\mathbf{y} \in \mathbb{R}^n$. It follows that $A_r^2 = A_r = A_r^T$ for all r. Then

- $A_r Y$, r = 1, 2, ..., m are independent
- $A_r \mathbf{Y} \sim N_n(A_r \mu, \sigma^2 A_r)$
- $E(\mathbf{Y}^T A_r \mathbf{Y}) = \sigma^2 p_r + \mu^T A_r \mu$, where $p_r = \operatorname{tr}(A_r) = \operatorname{rank}(A_r)$.
- $\mathbf{Y}^T A_r \mathbf{Y} \sim \sigma^2 \chi_{D_r}^2 \Leftrightarrow A_r \mu = 0$

This can be proved using 1st year Linear Algebra, but we will omit the proof.

Corollaries

Distribution of $\widehat{\beta}$ and $S(\widehat{\beta})$. Let m=2, $A_1=H$, $A_2=(I-H)$; we find $p_1=p$ and $p_2=n-p$. Also note that $(X^TX)^{-1}X^TA_1$ \mathbf{Y} simplifies to $\widehat{\beta}$, so $\widehat{\beta}$ is indeed a function of A_1 \mathbf{Y} . Details left as exercise. This also proves the results on page 42.

Full vs. Reduced model F test. Let m = 3, $A_1 = X_1(X_1^TX_1)^{-1}X_1^T$, $A_2 = X(X^TX)^{-1}X^T - A_1$, $A_3 = I - A_1 - A_2$; we find $p_1 = q$, $p_2 = p - q$ and $p_3 = n - p$. We can simplify: $\mathbf{Y}^TA_2\mathbf{Y} = SS_{\text{ER}} - SS_{\text{EF}}$ and $\mathbf{Y}^TA_3\mathbf{Y} = SS_{\text{EF}}$. Details left as exercise.

Correcting for the mean. This just corresponds to taking one of the terms, say $\mathbf{Y}^T A_1 \mathbf{Y}$, to be $n\overline{\mathbf{Y}}^2$. The corresponding $p_1 = 1$.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 97/154

9. Factorial experiments

This section is concerned with the situation where all of the explanatory variables are factors. The simplest examples are (e) and (f) of Section 1 (one-and two-way analysis of variance). Such data very often arises from designed experiments, rather than observational studies, and the design of these experiments is the subject of the Experimental design unit.

Least squares estimates

As we noted before, the X matrix in these problems may not be full-rank, so we usually find least squares estimates from first principles, not the matrix formula.

One-way analysis. In double-subscript notation:

$$Y_{ij} = \alpha_i + \epsilon_{ij}, j = 1, 2, \dots, n_i; i = 1, 2, \dots, k$$

where $n = \sum_{i=1}^{k} n_k$. Or we may prefer to express the effects of the factor as departures from an overall mean:

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, j = 1, 2, \dots, n_i; i = 1, 2, \dots, k$$

Note that the least squares estimates cannot be unique: we need to impose a constraint to ensure uniqueness – we will use $\sum_{i=1}^k n_i \alpha_i = 0$, but other possibilities are $\alpha_1 = 0$, $\sum_i \alpha_i = 0$, etc.

The sum of squares is

$$S(\mu, \alpha) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \mu - \alpha_i)^2$$

$$=\sum_{i=1}^k\sum_{i=1}^{n_i}\left((Y_{ij}-\overline{Y}_{i.})+(\overline{Y}_{i.}-\overline{Y}_{..}-\alpha_i)+(\overline{Y}_{..}-\mu)\right)^2$$

where dots as subscripts to \overline{Y} indicate averaging over missing subscripts. Expanding out the square, we find that because $\sum_{i=1}^{k} n_i \alpha_i = 0$, the cross-terms cancel, and we get:

$$S(\mu, \alpha) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{Y}_{i.} - \overline{Y}_{..} - \alpha_i)^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{Y}_{..} - \mu)^2$$

Hence the LSE's are $\widehat{\mu} = \overline{Y}_{..}$ and $\widehat{\alpha}_i = \overline{Y}_{i.} - \overline{Y}_{..}$

We also see immediately that the residual sum of squares is $SS_E = S(\widehat{\mu}, \widehat{\alpha}) = \sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2$ and the same argument gives the sum-of-squares decomposition

$$SS_{\mathrm{T}} = \mathbf{Y}^{\mathsf{T}} \mathbf{Y} = SS_{\mathrm{E}} + SS_{\mathrm{group}} + n \overline{Y}_{..}^{2}$$

where $SS_{group} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{Y}_{i.} - \overline{Y}_{..})^2$ The ANOVA table is, in part:

Source	SS	df
Due to groups	$SS_{ m group}$	<i>k</i> − 1
Residual	SS_{E}	n – k
Total, corrected	SS_{T}^{\star}	<i>n</i> − 1

and the one-way analysis of variance test of the hypothesis that all the α_i are equal to 0 refers

$$F = \frac{SS_{\text{group}}/(k-1)}{SS_{\text{E}}/(n-k)}$$

to the $F_{k-1,n-k}$ distribution (justified, again, by the result on slide 51).

Row-and-column analysis. We can follow the same line with the row-plus-column model (example (f))

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, i = 1, 2, \dots, r; j = 1, 2, \dots, c$$

but instead we will look at the more general case:

Two-way analysis, with replication. Suppose that we have an *equal* number ℓ of repeat or replicate observations in each (i, j) cell of the two-way layout. The model is as above, but with an additional term:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

for $i=1,2,\ldots,r; j=1,2,\ldots,c; k=1,2,\ldots,\ell$. Let $n=rc\ell$. As in the previous analysis, least squares estimates are not unique as the model stands, and we need to impose some constraints. We assume $\sum_i \alpha_i = 0$, $\sum_j \beta_j = 0$, and $\sum_i \gamma_{ij} = 0$ for all j and $\sum_i \gamma_{ij} = 0$ for all j.

The sum of squares is

$$S(\mu, \alpha, \beta, \gamma) = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{\ell} (Y_{ijk} - \mu - \alpha_i - \beta_j - \gamma_{ij})^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{\ell} ((Y_{ijk} - \overline{Y}_{ij.}) + (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...} - \gamma_{ij})$$

$$+ (\overline{Y}_{i..} - \overline{Y}_{...} - \alpha_i) + (\overline{Y}_{.j.} - \overline{Y}_{...} - \beta_j) + (\overline{Y}_{...} - \mu))^2$$

103/154

As in the one-way analysis, the choice of constraints means that all cross-terms cancel when the square is multiplied out, so that $S(\mu, \alpha, \beta, \gamma)$ is the triple sum (over i, j and k) of $(Y_{ijk} - \overline{Y}_{ij.})^2$, $(\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...} - \gamma_{ij})^2$, $(\overline{Y}_{i..} - \overline{Y}_{...} - \alpha_i)^2$, $(\overline{Y}_{.j.} - \overline{Y}_{...} - \beta_j)^2$, and $(\overline{Y}_{...} - \mu)^2$.

The least squares estimates are therefore

$$\widehat{\gamma}_{ij} = \overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...} \quad , \quad \widehat{\alpha}_i = \overline{Y}_{i..} - \overline{Y}_{...}$$

$$\widehat{\beta}_j = \overline{Y}_{.j.} - \overline{Y}_{...}$$
 and $\widehat{\mu} = \overline{Y}_{...}$

The residual sum of squares is $SS_E = S(\widehat{\mu}, \widehat{\alpha}, \widehat{\beta}, \widehat{\gamma}) = \sum_{i=1}^r \sum_{j=1}^c \sum_{k=1}^\ell (Y_{ijk} - \overline{Y}_{ij.})^2$ and the sum-of-squares decomposition is

$$\textit{SS}_T = \textit{\textbf{Y}}^T \, \textit{\textbf{Y}} = \textit{SS}_E + \textit{SS}_{row} + \textit{SS}_{col} + \textit{SS}_{inter} + n \overline{\textit{\textbf{Y}}}_{..}^2$$

where $SS_{\text{row}} = c\ell \sum_{i=1}^{r} (\overline{Y}_{i..} - \overline{Y}_{...})^2$, $SS_{\text{col}} = r\ell \sum_{j=1}^{c} (\overline{Y}_{.j.} - \overline{Y}_{...})^2$, and $SS_{\text{inter}} = \ell \sum_{i=1}^{r} \sum_{j=1}^{c} (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...})^2$.

ANOVA table:

Source	SS	df
Rows	SS_{row}	<i>r</i> − 1
Columns	$SS_{ m col}$	<i>c</i> − 1
Interaction	SS_{inter}	(r-1)(c-1)
Cells	SS _{cells}	<i>rc</i> – 1
Residual	SS_{E}	$\mathit{rc}(\ell-1)$
Total, corrected	SS_{T}^{\star}	<i>n</i> − 1

where $SS_{\text{cells}} = SS_{\text{row}} + SS_{\text{col}} + SS_{\text{inter}}$ of course. By analogy with previous cases, this gives F tests of hypotheses that there is no interaction ($\gamma_{ij} \equiv 0$), or no row effects ($\alpha_i \equiv 0$) or no column effects ($\beta_j \equiv 0$). As usual, the F ratios and their degrees of freedom are read off from the table; for example the test for no interaction is based on referring

$$F = rac{SS_{ ext{inter}}/((r-1)(c-1))}{SS_{ ext{E}}/(rc(\ell-1))}$$
 to $F_{(r-1)(c-1),rc(\ell-1)}$

Peter Green (Bristol) Data Analysis I AIMS Cameroon 105/154

Verification of assumptions of ANOVA theorem

Here we spell out the checking of assumptions of the ANOVA theorem for one case – the two-way replicated analysis.

The response vector \mathbf{Y} and its sum of squares are decomposed into m=5 pieces. The matrices A_1, A_2, \ldots, A_5 are defined implicitly by their effect on the vector \mathbf{Y} . For $r=1,2,\ldots,5$, the vector $A_r\mathbf{Y}$ is indexed by a triple subscript (i,j,k), like the response vector itself. The (i,j,k) entries of $A_r\mathbf{Y}$, for $r=1,2,\ldots,5$ are, respectively: $(Y_{ijk}-\overline{Y}_{ij.}), (\overline{Y}_{ij.}-\overline{Y}_{i..}-\overline{Y}_{j..}+\overline{Y}_{...}), (\overline{Y}_{ij.}-\overline{Y}_{...}), (\overline{Y}_{ij.}-\overline{Y}_{...}), and (\overline{Y}_{...}).$

The assumption that $\sum_r A_r = I$ is verified by observing that these add up to Y_{ijk} . The assumption that $A_r^T A_s = \mathbf{0}$ is verified by taking any two of these 5 terms, summing over all (i, j, k) and checking that the result is 0 (using the given constraints).

Peter Green (Bristol) Data Analysis I AIMS Cameroon 106/154

For example

$$\sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{\ell} (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...}) (\overline{Y}_{i..} - \overline{Y}_{...})$$

$$= \ell \sum_{i=1}^{r} (\overline{Y}_{i..} - \overline{Y}_{...}) \sum_{j=1}^{c} (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.i.} + \overline{Y}_{...})$$

$$= \ell \sum_{i=1}^{r} (\overline{Y}_{i..} - \overline{Y}_{...}) (c\overline{Y}_{i..} - c\overline{Y}_{i..} - c\overline{Y}_{...} + c\overline{Y}_{...})$$

$$= \ell \sum_{i=1}^{r} (\overline{Y}_{i..} - \overline{Y}_{...}) 0 = 0$$

Motivation for the model with interaction

A feature of the model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk},$$

for
$$i = 1, 2, ..., r; j = 1, 2, ..., c; k = 1, 2, ..., \ell$$
, or in **R**:

 $Y \sim Row*Column$ is that it allows us to examine whether row and column effects are *additive* or not. For example, consider agricultural trial data where rows represent sites and columns reprsent varieties of a crop. The additive model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk},$$

(Yield~Site+Variety) assumes that the advantage of a good variety affects the yield of crop at all sites equally. It is perhaps more realistic to accept the possibility that this is not true, that is to allow the γ_{ij} term into the model, which becomes Yield~Site*Variety. The additive model, without the interaction term, is however easier to interpret, so testing for the presence of the interaction (with the F test on slide 58) would usually be the first inference to be performed. If the hypothesis of no interaction is not rejected, then we can use the simpler interpretation.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 108/154

Whether or not interaction is detected depends on the scale on which the measurements are made. Sometimes we consider transforming the responses using some monotonic function, to achieve additivity. For example, imagine the data were generated, without noise, from the model

$$Y_{ijk} = \alpha_i \times \beta_j$$

(a multiplication table!) Then an additive model would not fit very well. If we had replicated data with a little noise, and we tested for interaction, we would probably conclude that it was indeed present. However if we take logs, we get

$$\log Y_{ijk} = \log \alpha_i + \log \beta_j$$

and the additive model would fit perfectly.

Note however that taking transformations like this alters the distributional shape: it is not possible for both Y and $\log Y$ to be normally distributed.

Non-replicated case

When there is only $\ell=1$ observation in each (i,j) cell, we do not need the subscript k and the model becomes

$$Y_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ij}, i = 1, 2, ..., r; j = 1, 2, ..., c.$$

We can immediately see a problem: we will not be able to distinguish the interaction γ_{ij} from the noise ϵ_{ij} . This is an inevitable consequence of having only one observation per cell.

If you ignored this, then the residual sum of squares SS_E on slide 57, namely $\sum_{i=1}^r \sum_{j=1}^c \sum_{k=1}^\ell (Y_{ijk} - \overline{Y}_{ij.})^2$ collapses to zero, and its degrees of freedom $rc(\ell-1)$ are also zero. If you then tried to perform the F tests, the denominator mean square would be 0/0, not defined.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 110/154

We have to assume there is nointeraction, and omit that term, giving

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, i = 1, 2, ..., r; j = 1, 2, ..., c.$$

which is just example (f) again. Correspondingly we do not break down the sum of squares into so many pieces. With SS_{row} and SS_{column} defined as on slide 57, but with the thirdsubscript (always ".") omitted, we put $SS_E = \sum_{i=1}^r \sum_{j=1}^c (\overline{Y}_{ij} - \overline{Y}_{i.} - \overline{Y}_{j.} + \overline{Y}_{..})^2$, and obtain

$$SS_{\mathrm{T}} = \mathbf{Y}^{T} \mathbf{Y} = SS_{\mathrm{E}} + SS_{\mathrm{row}} + SS_{\mathrm{col}} + n\overline{Y}_{..}^{2}$$

The ANOVA table simplifies to

Source	SS	df
Rows	SS_{row}	<i>r</i> − 1
Columns	$SS_{ m col}$	<i>c</i> − 1
Residual	$SS_{ m E}$	(r-1)(c-1)
Total, corrected	SS_{T}^{\star}	<i>n</i> − 1

It is important to remember that we have made an assumption (that row and column effects are additive), and make some effort to assess if that is supported by the data, even if the F test is not possible. The diagnostic plots from Section 3 should reveal any problem – if there is interaction, it will usually show up in the fitted values/residuals plot.

Unequally-replicated case

Sometimes, by design or accident (e.g. missing data), our data has an unequal degree of replication:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk},$$

for $i=1,2,\ldots,r; j=1,2,\ldots,c; k=1,2,\ldots,\ell_{ij}$, where the ℓ_{ij} are not all equal. The total number of observations is $n=\sum_i\sum_i\ell_{ij}$.

With appropriate changes (the ℓ_{ij} go inside the summations in the definitions of the sums of squares, and the residual degrees of freedom becomes $\sum_i \sum_j (\ell_{ij} - 1)$), the ideas in slides 56 to 58 mostly still apply, except that we lose orthogonality, e.g.

$$\sum_{i=1}^{r} \sum_{j=1}^{c} \ell_{ij} (\overline{Y}_{i..} - \overline{Y}_{...}) (\overline{Y}_{.j.} - \overline{Y}_{...})$$

is not in general zero. The ANOVA then becomes more complicated, and must be interpreted sequentially, as in the case of general regression.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 113/154

Blocks and treatments

Suppose we want to compare a set of *treatments*, for example, drug therapies, fertilisers or varieties in agriculture, industrial process settings, or teaching methods, and we want to make our comparisons on a broad range of experimental units, for example, patients of different ages, fields in different locations, etc. Groups of units that are similar are called blocks, and the standard arrangement is the randomised block design, where we compare say rdifferent treatments, applying each to cdifferent blocks of r units, the units being randomly assigned to the treatments in each block in order to protect against any accidental bias. Sometimes there are replicates, e.g. there might be ℓr units in each block, with ℓ assigned to each treatment. In this situation, a two-way analysis of variance is appropriate, even though we are typically only interested in differences between treatments, not between blocks.

But you might think that a one-way analysis of variance would be sufficient. Does it matter which you do?

Suppose we have unreplicated data and that the response to treatment i in block j is Y_{ij} .

The *F* test of the hypothesis of no treatment effect refers

$$F = \frac{SS_{\text{row}}/(r-1)}{SS_{\text{E}}/((r-1)(c-1))}$$
 to $F_{(r-1),(r-1)(c-1)}$

according to slide 64. If we did a one-way analysis test of the same hypothesis we would refer

$$F^{[1]} = \frac{SS_{\text{row}}/(r-1)}{SS_F^{[1]}/r(c-1)}$$
 to $F_{(r-1),r(c-1)}$

from slide 55, changing the notation there to match the present situation.

The numerators in the F ratios are the same, but the denominators are different. The residual sums of squares are

 $SS_E = \sum_{i=1}^r \sum_{j=1}^c (\overline{Y}_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..})^2$ and $SS_E^{[1]} = \sum_{i=1}^r \sum_{j=1}^c (Y_{ij} - \overline{Y}_{i.})^2$ from slides 64 and 55 respectively, and the degrees of freedom are correspondingly different. If there are substantial differences between block means, then $SS_E^{[1]} \gg SS_E$. The one-way test is then much less sensitive (less likely to reject the null hypothesis, even if it is false). The distinction is the same as that between the paired comparison t-test and the two-sample t-test, which is what this all reduces to if t = 2.

Connection with t tests

A point about connections between t and F tests was made in the regression context in question 1 of sheet 4, but it is more general.

The percentage points in the tables satisfy $t_{\nu}(\alpha/2)^2 = F_{1,\nu}(\alpha)$ for all ν,α , or in \mathbf{R} , $\operatorname{qt}(1-p/2,\operatorname{nu})^2 = \operatorname{qf}(1-p,1,\operatorname{nu})$ for all (p,nu) , and recalling the definitions of the t and F distributions in terms of independent normal and χ^2 random variables, it is not hard to see why. As for the test statistics, consider the non-replicated two-way analysis, with r=2. Let $d_j=Y_{1j}-Y_{2j}$. Then

 $SS_{\text{row}} = c \sum_{i} (\overline{Y}_{i.} - \overline{Y}_{..})^2$ can be written as $(c/2)\overline{d}^2$, while $SS_{\text{E}} = \sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} - \overline{Y}_{..})^2$ is the same as $(1/2) \sum_{j} (d_j - \overline{d})^2$. So

$$F = \frac{SS_{\text{row}}/(r-1)}{SS_{\text{E}}/((r-1)(c-1))} = \frac{c\overline{d}^2}{\sum_i (d_i - \overline{d})^2/(c-1)}$$

which is clearly just the square of the paired-comparison *t* statistic.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 117/154

10. Residual analysis

Residual analysis allows us to

- check the assumptions of the model,
- 2 check the adequacy of the model,
- detect outliers.

The residuals are given by

$$\hat{\boldsymbol{e}} = \boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}.$$

Before examining the residuals, it is common to standardise them as follows

$$r_i = \frac{\hat{e}_i}{\widehat{\sigma}_{e_i}}$$

where $\widehat{\sigma}_{e_i}$ is the estimated standard error for \widehat{e}_i . Then under the assumptions of the NLM, the r_i should be **i.i.d. N(0, 1)** random variables. We can check this using graphical methods.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 118/154

Normality assumption

The normality assumption can be checked using a q-q plot. Plot $r_{(i)}$, the *i*th rank order residuals against

$$\Phi^{-1}\left(\frac{i-\frac{1}{2}}{n}\right)$$

the "expected normal deviate". If the r_i are normally distributed, the points should fall on a straight line at a 45 degree angle.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 119/154

Constant variance assumption

Plot r_i versus fitted values \hat{y}_i and look for systematic changes in spread about r = 0.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 120/154

Model adequacy

We need check if there are any systematic trends in the residuals.

Plot r_i versus explanatory variables in the model.

Plot r_i versus explanatory variables **not** included in the model.

Plot r_i versus \hat{y}_i .

Plot r_i versus time (if applicable).

Outliers

If the residuals have been standardised we expect the majority to fall in the range (-2, 2). We can check the plot of r_i vs. y_i for any observations with "large" r_i . Such observations should be checked.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 122/154

Variable Selection

Generally aim for a **parsimonious** model: the simplest model that describes the data well. Need to balance competing objectives:

Include as many variables as possible

- avoid bias in $\widehat{\beta}_j$'s
- include all variables with predictive power

Include as few variables as possible

- reduce variance of \hat{y}_i 's
- keep model simple

Leverage

Recall

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}},$$

So

$$\widehat{\boldsymbol{y}} = \boldsymbol{X} (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{y} = \boldsymbol{H} \boldsymbol{y},$$

where H is called the **hat matrix**. It can be shown that residuals $\hat{\mathbf{e}} = \mathbf{y} - \hat{\mathbf{y}}$ have $E(\hat{\mathbf{e}}) = 0$ and $Var(\hat{\mathbf{e}}) = \sigma^2(\mathbf{I} - \mathbf{H})$, or

$$Var(\hat{\epsilon}_i) = \sigma^2(1 - H_{ii}) = \sigma^2(1 - h_i)$$

where h_i is known as the **leverage**. An observation with high leverage, h_i , makes $Var(\hat{\epsilon}_i)$ small, forcing the fit close to y_i .

The average of all n leverages is k/n, so anything with leverage > 2k/n should be considered more closely.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 124/154

Cook's Distance

Cook's Distance is a measure of influence. It can be defined as

$$D_i = \frac{(\widehat{\boldsymbol{\beta}}_{(i)} - \widehat{\boldsymbol{\beta}})'(\boldsymbol{X}'\boldsymbol{X})(\widehat{\boldsymbol{\beta}}_{(i)} - \widehat{\boldsymbol{\beta}})}{k\widehat{\sigma}^2}$$

where $\widehat{\beta}_{(i)}$ is the estimate of $\widehat{\beta}$ omitting observation *i*. It can be shown that

$$D_i = \frac{\hat{\epsilon}^2}{k\sigma^2} \left(\frac{h_i}{(1 - h_i)^2} \right)$$

showing that D_i is a function of the residual and the leverage.

Observations with $D_i > 0.5$ may be of concern and observations with $D_i > 1$ should definitely be checked.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 125/154

Multicollinearity

Since

$$\widehat{eta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
 $Var(\widehat{eta}) = (\mathbf{X}'\mathbf{X})^{-1}\sigma^2$

in general all $\widehat{\beta}_j$ are correlated and each $\widehat{\beta}_j$ changes on addition/deletion of variables.

When there are near linear dependencies between variables, the variables are described as **mulitcollinear**. So

- variances of parameter estimates are high
- parameter estimates change drastically on addition/deletion of variables
- danger of hidden extrapolation

Peter Green (Bristol) Data Analysis I AIMS Cameroon 126/154

Diagnosing Multicollinearity

Can look at pairwise scatterplots, but this only indicates pairwise correlation. Multicollinearity can be detected by **variance inflation factors** *VIF*. It can be shown that

$$Var(\widehat{\beta}_j) = \frac{1}{1 - R_j^2} \left(\frac{\sigma^2}{\sum_{i=1}^n (x_{ji} - \overline{x}_j)^2} \right)$$

or more simply

$$VIF_j = \frac{1}{1 - R_j^2}$$

where R_j^2 is the R^2 value for the regression of x_j on all the other regression variables.

A $\it VIF > 10$ suggest serious multicollinearity and one should be concerned if $\it VIF > 5$.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 127/154

11. Variable Selection

Variables can often be selected manually using a sensible model building strategy, e.g.

- starting from a full model then simplifying
- including variables on which response is assumed to depend then considering the addition of further variables

However, when there are many variables this becomes more difficult. One approach is to use automatic selection procedures to suggest a model/candidate models.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 128/154

Forward Selection

Start with intercept then add variables one at a time. Suppose the current model has residual SS

$$SSE_{(1)}$$

We try adding each of the remaining variables and find the variable x_j which when added gives the model with smallest residual SS

$$SSE_{(2)}$$

Under $H_0: \beta_i = 0$,

$$F_0 = \frac{SSE_{(1)} - SSE_{(2)}}{\widehat{\sigma}^2} \sim F_{1,n-k}$$

where $\hat{\sigma}^2$ is the residual mean square of the full model with k parameters. If $F_0 > F_{1,n-k;\alpha}$, x_j is added and the next variable is sought, otherwise we stop.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 129/154

Backward Elimination

Start with full model then drop variables one at a time. Suppose the current model has residual SS

$$SSE_{(1)}$$

We try dropping each of the remaining variables and find the variable x_j which when dropped gives the model with smallest residual SS

$$SSE_{(2)}$$

Under H_0 ; $\beta_i = 0$

$$F_0 = \frac{SSE_{(2)} - SSE_{(1)}}{\widehat{\sigma}^2} \sim F_{1,n-k}$$

If $F_0 < F_{1,n-k;\alpha}$, x_j is dropped from the model and the next variable to be dropped is sought, otherwise stop.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 130/154

Stepwise Selection

With forward selection, a variable include early on may become unnecessary after a latter variable is added.

With backward elimination, a variable removed early on may become significant after others are deleted.

Stepwise selection is a combination of the two: proceed as with forward selection, but at each stage test to see if any variables currently in the model can be dropped.

Stop when all potential deletions would significantly increase the residual sum of squares and when all potential additions would not significantly decrease the residual sum of squares.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 131/154

Problems with Sequential Procedures

- do not guarantee the "best" model will be chosen
- all select one model may be several good models
- different procedures may select different models
- order in which variables enter/leave does not reflect "importance"
- multicollinearity is not diagnosed
- multiple significance testing α not true level of significance

All subsets regression

If the number of variables is not too large (say < 30) it is possible to consider all possible regressions and choose "the best" according to some criteria. R^2 and R^2_{adj} are two possible criteria. Another possibility is Mallow's C_p statistic

$$C_p = \frac{SSE_p}{\widehat{\sigma}^2} + 2p - n$$

where p is the number of parameters in the current model, SSE_p is the corresponding residual SS and $\hat{\sigma}^2$ is the residual mean square from the full model.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 133/154

If a model with p parameters is adequate there will be no lack of fit or bias, so we can estimate residual variance as

$$\frac{SSE_p}{(n-p)}$$
 \Rightarrow $E(SSE_p) = (n-p)\sigma^2 \Rightarrow E(C_p) = p$

Therefore select model with fewest parameters that has $C_p \approx p$. Usually, but not always the lowest C_p .

All subsets regression is carried out in R using leaps () from the leaps package.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 134/154

AIC Model Selection Procedures

The Akaike information criterion, *AIC*, is given by

$$AIC = -2I(\hat{\beta}) + 2k$$

where

- $I(\hat{\beta})$ the log-likelihood of the candidate model given the data when evaluated at the maximum likelihood estimate (MLE) $\hat{\beta}$;
- k is the number of estimated parameters in the candidate model

The *AIC* in isolation is meaningless. Rather, this value is calculated for every candidate model and the *best* model is the candidate model with the *smallest AIC*, say *AIC**.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 135/154

BIC Model Selection Procedures

The Bayesian information criterion *BIC*, also referred to as the Schwarz information criterion is another model selection criterion is

$$BIC = -2I(\hat{\beta}) + k \log n$$

It is based on information theory but set within a Bayesian context. The difference between the *BIC* and the *AIC* is the greater penalty imposed for the number of parameters by the former than the latter.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 136/154

BIC Model Selection Procedures

The best model is the one that provides the minimum BIC, say BIC^* Given M models, $\Delta BIC = BIC - BIC^*$ can be interpreted as evidence against a candidate model being the best model. The rules of thumb for ΔBIC are:

- < 2, it is not worth more than a bare mention.</p>
- [2,6], the evidence against the candidate model is positive.
- [6, 10], the evidence against the candidate model is strong.
- > 10, the evidence is very strong.

Similarly for $\triangle AIC = AIC - AIC^*$.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 137/154

Problems with Automatic Selection Procedures

All subsets regression, like the sequential procedures has the attraction of selecting the "best" model.

However none of these procedues takes into account other factors, e.g.

- subject knowledge
- costs
- examination of residuals
- multicollinearity

All methods of variable selection can overstate significance of variables in the final model.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 138/154

12. Weighted Least Squares

The method of weighted least squares (WLS) can be used when the ordinary least squares assumption of constant variance in the errors is violated (heteroscedasticity). The model is

$$E[Y|X] = X\beta$$

with

$$Cov(Y|\mathbf{X}) = \sigma^2 \mathbf{W}^{-1}$$

or

$$var(Y|X = x_i) = var(e_i) = \sigma^2/w_i, \ w_i > 0$$

where W is a diagonal positive definite matrix.

Show that $\hat{\boldsymbol{\beta}}_{w} = (\boldsymbol{X}'W\boldsymbol{X})^{-1}\boldsymbol{X}'W\boldsymbol{y}$ is unbiased and that

$$var(\hat{\boldsymbol{\beta}}_{w}) = \sigma^{2}(\boldsymbol{X}'W\boldsymbol{X})^{-1}$$

Weighted Least Squares: Exercise

Show that the WLS estimator that minimises

$$SSE_w(\beta) = (Y - X\beta)'W(Y - X\beta)$$

is

$$\hat{\boldsymbol{\beta}}_{w} = (\boldsymbol{X}'W\boldsymbol{X})^{-1}\boldsymbol{X}'W\boldsymbol{y}.$$

and prove that $\hat{\beta}_w$ is unbiased and that

$$var(\hat{\boldsymbol{\beta}}_w) = \sigma^2 (\boldsymbol{X}' W \boldsymbol{X})^{-1}$$

with $\sigma^2 = SSE_w/d$, d = n - k d.f.

140/154

Dependence and heteroscedasticity

Exercise Dependence and heteroscedasticity

Suppose that Y|X is $MVN(X\beta, \sigma^2W)$ where W is a known positive definite matrix. Show that the MLE of β is given by the generalised least squares estimator

$$\tilde{\boldsymbol{\beta}} = (\mathbf{X}'W^{-1}\mathbf{X})^{-1}\mathbf{X}'W^{-1}\mathbf{y}.$$

How to choose the weights

Given that

$$\hat{\boldsymbol{\beta}}_{w} = (\boldsymbol{X}'W\boldsymbol{X})^{-1}\boldsymbol{X}'W\boldsymbol{y}$$
 and $var(Y|\boldsymbol{X}=x_{i}) = var(e_{i}) = \sigma^{2}/w_{i}, w_{i} > 0$

We can define each $w_i = 1/\sigma_i^2$ and since

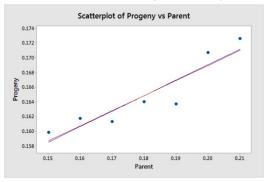
- each weight is inversely proportional to the error variance, it reflects the information in that observation;
- an observation with small error variance has a large weight since it contains relatively more information than an observation with large error variance;
- weights have to be known (or are usually estimated) up to a proportionality constant.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 142/154

How to choose the weights: example

Parent	0.21	0.2	0.19	0.18	0.17	0.16	0.15
Progeny	0.1726	0.1707	0.1637	0.164	0.1613	0.1617	0.1598
σ_i	0.01988	0.01938	0.01896	0.02037	0.01654	0.01594	0.01763

Progeny = 0.127 +0.21Parent for simple linear regression with $w_i = 1$. Progeny = 0.128 +0.20Parent for $w_i = 1/\sigma_i^2$ and we get the weighted LS.



The *red* line is the WLS, the *blue* line is the LS.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 143/154

How to choose the weights

Other cases where the weights might be known:

- If the i-th response is an average of n_i equally variable observations, then $w_i = n_i$;
- If the i-th response is a total of n_i observations, then $w_i = 1/n_i$;
- If the variance is proportional to some predictor x_i , then $w_i = 1/x_i$.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 144/154

How to choose the weights

- If a residual plot against a predictor exhibits a megaphone shape, then regress the absolute values of the residuals against that predictor. The resulting fitted values \hat{y}^* of this regression are estimates of σ_i , so $w_i = 1/\sigma_i^2$;
- If a residual plot against the fitted values exhibits a megaphone shape, then regress the absolute values of the residuals against the fitted values. So the resulting \hat{y}^* are estimates of σ_i .
- If a residual plot of the squared residuals against a predictor exhibits an upward trend, then regress the squared residuals against that predictor. So the resulting \hat{y}^* are estimates of σ_i .
- If a residual plot of the squared residuals against the fitted values exhibits an upward trend, then regress the squared residuals against the fitted values. So the resulting \hat{y}^* are estimates of σ_i .

After using one of these methods to estimate $w_i = 1/\sigma_i^2$, then use these weights in estimating a WLS regression model.

Box-Cox Transformations

Try stabilising the variance using **Box-Cox transformation**:

$$y^{(\lambda)} = egin{cases} (y^{\lambda} - 1)/\lambda & \lambda \text{ne0} \\ \log y & \lambda = 0 \end{cases}$$

Assuming all regression parameters are set at their maximum likelihood estimates the **profile likelihood** for λ is

$$L(\hat{\lambda}) = \operatorname{const} - \frac{n}{2} \log \operatorname{SSE}(z^{(\lambda)})$$

where $z^{(\lambda)} = y^{(\lambda)}/\dot{y}^{(\lambda-1)}$, where \dot{y} represents the geometric mean, and SSE is the residual sum of squares for the regression of $z^{(\lambda)}$.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 146/154

Problems shown by residuals

Heavy-tailed distribution, variance increases with \hat{y}

→ transformation (Box-Cox)

Positively skewed distribution

- → counts? log-linear modelling
- Variance shows "double bow" shape
- → proportions? logistic regression
- Relationship with x_j
- \rightarrow include x_j in the model

Increasing variance with x_i

- → weighted least squares
- Outliers
- → check validity; check influence

13. Data collection in finite samples

How can we collect data so that the sample represents the population?

What do we even means by "represents"?

e.g. the proportion of the sample whose value lies in some interval is "like" the proportion of the population whose value lies in that interval

How can we collect data so that the sample represents the population?

Let us look at some methods of collection:

- Collecting Data with a Sample Survey
- Collecting Data with an Experiment
- Collecting Data with an Observational Study

13. Data collection in finite samples

How can we collect data so that the sample represents the population?

What do we even means by "represents"?

e.g. the proportion of the sample whose value lies in some interval is "like" the proportion of the population whose value lies in that interval

How can we collect data so that the sample represents the population?

Let us look at some methods of collection:

- Collecting Data with a Sample Survey
- Collecting Data with an Experiment
- Collecting Data with an Observational Study

Peter Green (Bristol) Data Analysis I AIMS Cameroon 148/154

Collecting Data with a Sample Survey

Definition – Simple random sample

A simple random sample of n subjects from a population is one in which each possible sample of size n has the same probability (chance) of being selected.

In some sense this is the "perfect" way to ensure representativeness - certainly it is the simplest! But it is not always possible – e.g. how could you draw a random sample of 18–25 year-old people in Cameroon? On the other hand, if you make repeated measurements of a constant physical property with the same instrument, then it is reasonable to assume that you get a simple random sample.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 149/154

Some other kinds of random sampling

Definition – Stratified random sample

The population is divided into separate groups ("strata") and then select a simple random sample from each stratum. This is useful for comparing groups on some variable when a particular group is relatively small and may not be adequately represented in a simple random sample

Definition – Clustered random sample

The population is divided into a large number of clusters, such as city blocks, and a simple random sample of the clusters is collected. This is useful when a complete listing of the population is not available.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 150/154

Collecting Data with an Experiment

Some studies use a planned experiment to generate data. An experiment compares subjects on a response variable under different conditions. Those conditions, which are levels of an explanatory variable, are called treatments. For instance, the treatments might be different drugs for treating some illness, compared in a clinical trial.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 151/154

Planning an Experiment

The researcher specifies a plan for how to assign subjects to the treatments, called the experimental design. Good experimental designs use randomization to determine which treatment a subject receives. This reduces bias and allows us to use statistical inference.

Collecting Data with an Observational Study

In many application areas, it is not possible to conduct experiments to answer the questions of interest. We cannot randomly assign subjects to the groups we want to compare, such as levels of gender or race or educational level or annual income or usage of guns. Many studies merely observe the outcomes for available subjects on the variables of interest, without any experimental control of the subjects. Such studies are called observational studies.