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How does this course fit in the programme?

This unit builds on Introduction to Probability and Statistics (Dario
Domingo, September/October 2025) – we use the distribution theory and
basics of inference to discuss Linear Models, the main technical aspect to
this course
It is followed up by Data Analysis II (Thierry Chekouo, May/June 2026) -
which leads on from Linear Models to Generalized Linear Models
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Topics in syllabus, not yet in slides 1

Ability to manage various data sets and perform exploratory data
analysis.

Different data collection methods and data types with real life health-related
examples e.g routine malaria surveillance data vs cohort studies.

Know different approaches to data collection and the use of different data
types.

Sampling techniques: Probability and non-probability techniques and
examples.

Know how to pose relevant questions in data analysis, and formulate
these questions statistically.

Sample size determination for epidemiological studies
Limitations and advantages of different data types and when to use what
data (i.e what is the question being asked).
Accessing data, review of metadata, using data dictionaries, study types.
Checking for basic errors and distributions; documentation of errors or
missing data; creating variables and transforming data.
Univariate summary statistics, tabulations and descriptive figures.
Preparing statistical analysis plans
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Topics in syllabus, not yet in slides 2

Understand the basics of systematic literature review and meta-analysis
What is systematic literature review? What types of questions does it
answer? How is it done?
What is meta-analysis? What types of questions does it answer? How is it
done?
Be able to interpret and use results from systematic literature review and
meta-analysis with application to mathematical epidemiology using literature
based examples
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1. Paradigm

1. Paradigm for probabilistic statistical inference

When does “data analysis” become “statistical inference”? ... when we go
beyond statements about the the data we have to those about the data we
might have had or even what caused these data?

This leads us to distinguish our sample from the population.

The sample might have been different while the population is what we are
really interested in

Example (a finite population)

We are interested in the population of 18–25 year-old people in Cameroon,
and we study this by drawing a sample of such people, and analysing that
instead. What does that sample tell us about the population?

Example (an infinite population)

We are interested in the accuracy of a new instrument for measuring .... What
does that sample tell us about the population?
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1. Paradigm

The main ingredients, when the population is infinite

When the population is infinite, we can think of it as a probability distribution!
Regard the data x as the observed values of a random vector X
Model the distribution of X with a probability (density) function f (X ; θ)
depending on a parameter θ
Use the observed x in f (x ; θ) to make statements about θ, e.g.

estimate θ
calculate a confidence interval for θ
test hypotheses about the value of θ
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2. Simple linear regression

2. Simple linear regression –
Example: Oxygen Uptake

Example

For each of 24 males, the maximum volume of oxygen uptake in the blood
and the time taken to run 2 miles (in seconds) were measured. Interest lies on
the dependency between the time to run 2 miles and the oxygen uptake.
oxy=c(42.3, 53.1 ,42.1, 50.1, 42.5, 42.5, 47.8, 49.9, 36.2, 49.7, 41.5, 46.2, 48.2, 43.2, 51.8, 53.3, 53.3, 47.2,

56.9, 47.8, 48.7, 53.7, 60.6, 56.7)
time=c(918, 805, 892, 962, 968, 907, 770, 743,1045, 810, 927, 813, 858, 860, 760, 747,743, 803, 683, 844,
755, 700, 748, 775)
plot(time, oxy, col="red", main="Oxygen uptake", type="p",pch=16)
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2. Simple linear regression

Simple linear regression: Oxygen Uptake Example
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For individual i , let xi be the time
to run 2 miles, and Yi be the
maximum volume of oxygen
uptake, i = 1, · · · , 24.
A possible model is

Yi = β0 + β1xi + ei , i = 1, · · · ,24,

where ei are independent random
variables with variance σ2, and β0
and β1 are constants.
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2. Simple linear regression

Simple linear regression

We want to choose α and β to minimise the sum of squares
SS =

∑n
i=1(yi − α− βxi)

2. Differentiating partially,

∂SS
∂α

=
n∑

i=1

2(yi − α− βxi)(−1) = 0 if and only if
∑

i

yi = nα+ β
∑

i

xi

∂SS
∂β

=
n∑

i=1

2(yi − α− βxi)(−xi) = 0 if and only if
∑

i

xiyi = α
∑

i

xi + β
∑

i

x2
i

Solving for α and β we find the least squares estimates

β̂ =

∑
i(xi − x)(yi − y)∑

i(xi − x)2 and α̂ = y − β̂x
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2. Simple linear regression

Simple linear regression: Oxygen Uptake Example
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2. Simple linear regression

Simple linear regression

Move this and next slide to be an example of the general case
Hence

X ′X =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x2
i

)
⇒ (X ′X )−1 =

1
n
∑n

i=1 x2
i − (

∑n
i=1 xi)2

( ∑n
i=1 x2

i −
∑n

i=1 xi
−
∑n

i=1 xi n

)
.

Also

X ′y =

( ∑n
i=1 yi∑n

i=1 xiyi

)
.
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2. Simple linear regression

Simple linear regression

From which we can derive the following

β̂ = (X ′X )−1X ′y =

(
y − Sxy

Sxx
x

Sxy
Sxx

)

where

Sxy =
n∑

i=1

(xi − x)(yi − y) =
n∑

i=1

xiyi − nx y

and

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2 = s2

x (n − 1)

where s2
x is the sample variance of the observed xi , i = 1, . . . , n.
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2. Simple linear regression

Example

Example

Consider the relationship between the height H and the weight W of
individuals in a certain city. Certainly there’s no functional relationship
between H and W, but there does seem to be some kind of relation.
We consider them as random variables and postulate that (H,W ) has a
bivariate normal distribution. Then

E [W |H = h] = β0 + β1h

where β0 and β1 are functions of the parameters in a bivariate normal density.
Note that β0, β1 and h are all constants. We may write

W = β0 + β1h + E

where the error E is a normally distributed random variable with mean zero.
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2. Simple linear regression

Example (cont.)

Example

Thus if we observe the heights and weights of a sample of n people, the
model for the weights wi , . . . ,wn is given by

wi = β0 + β1hi + ei , fori = 1, . . . , n

where the error ei ∼ N(0, σ2). This is a simple linear regression model: a
linear model with one explanatory variable. In matrix form,

w = Xβ + e
w1
w2
...

wn

 =


1 h1
1 h2
...

...
1 hn


(
β0
β1

)
+


e1
e2
...

en

 .
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2. Simple linear regression

Simple linear regression: Example Oxygen uptake

move this and later oxygen example slides to correct place in the narrative

lm(formula = oxy ~ time)

Residuals: Min 1Q Median 3Q Max
-3.6461 -2.6422 -0.6792 1.0620 8.4545

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 90.69476 6.54324 13.861 2.38e-12 ***
time -0.05099 0.00787 -6.479 1.62e-06 ***

—
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 3.499 on 22 degrees of freedom
Multiple R-squared: 0.6561, Adjusted R-squared: 0.6405
F-statistic: 41.98 on 1 and 22 DF, p-value: 1.616e-06
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2. Simple linear regression

ANOVA: Example Oxygen uptake

anova(lmoxy)
Analysis of Variance Table
Response: oxy

Df Sum Sq Mean Sq F value Pr(>F)
time 1 513.84 513.84 41.978 1.616e-06 ***
Residuals 22 269.30 12.24

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Peter Green (Bristol) Data Analysis I AIMS Cameroon 18 / 154



2. Simple linear regression

Exercise: Oxygen Uptake

Exercise
For the oxygen uptake data, test the significance of the slope parameter at the
0.1% significance level.
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2. Simple linear regression

Simple linear regression: Example Oxygen uptake
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2. Simple linear regression

Prediction: Oxygen Uptake Exercise
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2. Simple linear regression

Prediction: Oxygen Uptake Exercise

Exercise
For the oxygen uptake data, use the simple linear regression model to predict
the maximum volume of oxygen uptake in the blood for for 3 individuals that
take 750, 850 and 950 seconds to run 2 miles. Give a 95% confidence
interval for these predictions.
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2. Simple linear regression

ANOVA: Example Oxygen uptake
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2. Simple linear regression

Residuals Analysis: Oxygen uptake
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2. Simple linear regression

Residuals Analysis: Oxygen uptake
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2. Simple linear regression

Scale–location

Standardised residuals should be within (-2,2) range.
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2. Simple linear regression

Residuals versus Leverage

Tells us influential variables. If Cook’s distance Di > 0.5 we must be
concerned and if Di > 1 check the variable.

0.00 0.05 0.10 0.15 0.20 0.25

−1
0
1
2
3

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

lm(oxy ~ time)

Cook’s distance

0.5
1

Residuals vs Leverage

423
24

Peter Green (Bristol) Data Analysis I AIMS Cameroon 28 / 154



3. Linear models

3. Linear models: Introduction

Linear models are statistical models where the expected response is a linear
function of parameters – it is a very large class of models that includes many
simpler models (such as linear regression and analysis of variance) as
important special cases

systematic treatment
model formulation in various ways
least squares estimation
optimality of least squares
connection with maximum likelihood
model adequacy

applications, including to regression and factorial experiments
demonstrations and practical work using R
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3. Linear models

Some data sets

The kyphosis data frame has 81 rows and 4 columns, data on children who have had
corrective spinal surgery
Kyphosis - a factor with levels absent present indicating if a kyphosis (a type of
deformation) was present after the operation.
Age - in months
Number - the number of vertebrae involved
Start - the number of the first (topmost) vertebra operated on.

> head(kyphosis)
Kyphosis Age Number Start

1 absent 71 3 5
2 absent 158 3 14
3 present 128 4 5
4 absent 2 5 1
5 absent 1 4 15
6 absent 1 2 16
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3. Linear models

Some data sets

The oxygen data frame has 24 rows and 2 columns, data on maximal oxygen uptake in
active military personnel during treadmill running
For each of 24 males, these variables were measured: VO2max - the maximum
volume of oxygen uptake in the blood.
time - time taken to run 2 miles (in seconds)

> head(oxygen)
VO2max time

1 42.3 918
2 53.1 805
3 42.1 892
4 50.1 962
5 42.5 968
6 42.5 907
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3. Linear models

Some data sets

The rubber data frame has 30 rows and 3 columns. Physical properties of 30 rubber
samples. Abrasion is expensive to determine, so there is interest in predicting it from
Hardness and Tensile.
Abrasion : abrasion loss (g/hp-hour) Hardness : hardness (deg shore) Tensile : tensile
strength (kg/sqcm)

> head(rubber)
Abrasion Hardness Tensile

1 372 45 162
2 206 55 233
3 175 61 232
4 154 66 231
5 136 71 231
6 112 71 237
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3. Linear models

Some data sets

The cabbages data frame shows
the results of a field trial on the
cultivation of cabbages, giving the
yields in each plot.

610 596 538 568 346

399 498 442 590 438

396 559 417 465 312

Cabbage yields
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3. Linear models

Some data sets

The potatoes data frame shows
the results of a field trial on the
cultivation of potatoes, giving the
yields in each plot and the levels
of nitrate and phosphate fertilizers
applied to the plot.
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3. Linear models

Motivation: data sets and basic ideas

structure and relationships
response and explanatory variables
quantitative and qualitative (categorical, factor) variables
statistical modelling
experiment and observation
causation
estimation, confidence intervals, testing
prediction

Linear models play a central role in theoretical and applied statistics
in practice – a major part of the basic toolkit
pedagogically – a pattern for other techniques
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4. Model formulation

4. Model formulation

Linear models can be formulated or specified in various ways. It is important
to be able to translate models fluently from one specification to another.

Responses are known linear functions of unknown parameters, plus an error
term. In matrix/vector notation:

Y = Xβ + ε

where Y is n × 1, and X is n × p, where p < n.

The response vector Y is assumed known (observed); the model or design
matrix X is also known, comprising observed explanatory variables or
experimental settings. The parameter vector β is the focus of our interest,
whether it is to be estimated, or some other inference carried out on it.
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4. Model formulation

Y = Xβ + ε,

or, spelling it out: Y1
...

Yn

 =

 x11 · · · x1p
...

...
xn1 · · · xnp


 β1

...
βp

+

 ϵ1
...
ϵn


Quite often, the model includes a constant or intercept term, which we will
may refer to as column 0: Y1

...
Yn

 =

 1 x11 · · · x1k
...

...
1 xn1 · · · xnk


 β0

...
βk

+

 ϵ1
...
ϵn


Here, p is k + 1.
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4. Model formulation

Matrix notation is convenient for developing the general theory, but specific
models are usually specified either in ordinary algebraic notation or in the
mnemonic model expression notation, devised by Wilkinson and Rogers, that
is used in many computer systems, including R.

Let us illustrate this with examples.
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4. Model formulation

a. Simple linear regression

Algebraic notation:
Yi = α+ βxi + ϵi , i = 1,2, . . . , n

Matrix formulation: Y = Xβ + ε as usual, with

X =

 1 x1
...

...
1 xn

 β =

(
α
β

)

Model expression: Y ∼ x (or, more commonly, we would use
self-explanatory names for the variables, e.g. cholesterol ∼ age). Note
that the intercept is not mentioned, but is included by default.
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4. Model formulation

b. Multiple linear regression

Algebraic notation:

Yi = α+ β1xi1 + β2xi2 + ϵi , i = 1,2, . . . , n

Matrix formulation:

X =

 1 x11 x12
...

...
1 xn1 xn2

 β =

 α
β1
β2


Model expression: (e.g.)
Abrasion ∼ Hardness+Tensile
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4. Model formulation

c. Linear regression without an intercept

Algebraic notation:

Yi = β1xi1 + β2xi2 + ϵi , i = 1,2, . . . , n

Matrix formulation:

X =

 x11 x12
...

...
xn1 xn2

 β =

(
β1
β2

)

Model expression: (e.g.)
Abrasion ∼ Hardness+Tensile-1
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4. Model formulation

d. Linear regression with functions and combinations
of explanatory variables

Algebraic notation:

Yi = α+ β1xi1 + β2 log xi2 + β3xi1 sin(xi2) + ϵi

Matrix formulation:

X =

 1 x11 log(x12) x11 sin(x12)
...

...
1 xn1 log(xn2) xn1 sin(xn2)

 β =


α
β1
β2
β3


Model expression: (e.g.)
Abrasion ∼ Hardness+log(Tensile)

+Hardness:sin(Tensile)
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4. Model formulation

e. Factor variables

Algebraic notation:
Yi = αsi + ϵi , i = 1,2, . . . ,n

where si ∈ {1,2, . . . , k} is an observed factor (that is, a qualitative variable).
Matrix formulation:

X =



1 0 · · · 0
...

...
1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1


β =

 α1
...
αk



The columns of X are often called dummy variables; they are not observed
numbers, but indicators of which component of β enters into the formula for
that observation.
Model expression: (e.g.)
lifetime ∼ make

Peter Green (Bristol) Data Analysis I AIMS Cameroon 43 / 154



4. Model formulation

Such models are also often expressed in a double-subscript notation:

Yij = αi + ϵij , j = 1,2, . . . , ni ; i = 1,2, . . . , k

where n =
∑k

i=1 nk . This is the same model in a different notation; Y is not a

matrix, but a vector: Y =



Y11
...

Y1n1

Y21
...

Yknk


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4. Model formulation

f. Two factors: row+column model
Algebraic notation (with double subscripts):

Yij = αi + βj + ϵij , i = 1,2, . . . , r ; j = 1,2, . . . , c

Matrix formulation:

X =

 1 0 · · · 0 I
...

...
0 0 · · · 1 I

 β =



α1
...
αr
β1
...
βc


In X , each 1 and 0 is a c-vector of 1’s and 0’s, respectively, and each I is the
c × c identity matrix. There are r rows of these blocks, so X is rc × (r + c).
Note that we return to this set-up later, and use a slightly different notation.
Model expression: (e.g.)
Yield ∼ Site+Variety
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4. Model formulation

g. Regression, with factor variables too
Algebraic notation:

Yi = αsi + βxi + ϵi , i = 1,2, . . . , n

where si ∈ {1,2, . . . , k} is an observed factor, and xi an ordinary numerical
variable. Matrix formulation:

X =


1 0 · · · 0 x1
1 0 · · · 0 x2
...

...
0 0 · · · 1 xn

 β =


α1
...
αk
β


(assuming s1 = s2 = 1 and sn = k ).
Model expression: (e.g.)
lifetime ∼ make+speed
In double-subscript notation:

Yij = αi + βxij + ϵij , j = 1,2, . . . , ni ; i = 1,2, . . . , k

Note that this specifies several parallel regression lines.
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4. Model formulation

h. Regression, with factor variables and interaction

Algebraic notation:

Yi = αsi + βsi xi + ϵi , i = 1,2, . . . , n

where si ∈ {1,2, . . . , k} is an observed factor.
Model expression: (e.g.)
lifetime ∼ make*speed or, equivalently,
lifetime ∼ make+speed+make:speed
In double-subscript notation:

Yij = αi + βixij + ϵij , j = 1,2, . . . , ni ; i = 1,2, . . . , k

Note that this specifies several separate regression lines: they need no longer
be parallel.
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4. Model formulation

Alternative parameterisations
There are always several ways to parameterise a model, and when
interpreting parameters or their estimates, it is important to bear the
parameterisation in mind.
For example

Yi = α+ βxi + ϵi , i = 1,2, . . . ,n
and Yi = α⋆ + β(xi − x) + ϵi , i = 1,2, . . . ,n

are identical models, where α⋆ = α+ βx . While β is the gradient in both
models, the “intercepts” α and α⋆ are different numbers with different
meanings.
This issue is especially important with factor variables. For example in case
(e) above, with two levels of the factor si as in the lathe example, we might
have chosen α1 = µ and α2 = µ+ δ, so that δ is the difference in mean lifetime
between the two makes of lathe. The X matrix would then be of the form

X =

(
1 0
1 1

)
instead of

(
1 0
0 1

)
Mathematically, two X matrices represent the same model if and only if they
have the same column spaces.
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4. Model formulation

Summary

Note the general patterns, so that you can put richer models together
using these ideas in a modular way.
A numerical explanatory variable contributes one column to X ; a factor
contributes as many columns as there are levels of the factor.
We use the + symbol to assemble sets of columns together,
corresponding to adding in successive terms in the model.
Learn the interpretation of interaction (symbolised by :) between two
factors, and between a factor and a numerical variable.
A*B is short for A+B+A:B
The individual components of β might correspond to other greek letters in
the algebraic specification of the model.
The individual components of Y and ε might have multiple subscripts in
the algebraic specification of the model.
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5. Least squares estimation

5. Least squares estimation

Fitting a linear model means estimating the regression coefficient parameter
β – we usually do this using the principle of least squares. An advantage of
this principle is that it makes sense without having to assume a statistical
model for the errors ε.
The idea is to choose that value of β, say β̂, such that the residual sum of
squares S(β) is minimised, where

S(β) =
n∑

i=1

ϵ2
i = εTε = ||ε||2

where
ε = Y − Xβ
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5. Least squares estimation

We can find a compact general expression for the solution to this minimisation
problem, if we make a simplifying assumption.

Until further notice we assume:

The matrix X is of full rank. This is equivalent to making any of these
assertions (recalling that p < n):

The rank of X is p
The columns of X are linearly independent
X T X is non-singular

(Note that this is a sensible assumption, since if it was not true, Xβ = Xβ⋆

would not imply β = β⋆, so that you could not expect to choose between β
and β⋆ using data Y = Xβ + ε. In this case, we say β is not identifiable.)

Which of the cases (a) to (h) in Section 1 satisfy this assumption?
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5. Least squares estimation

Let β̂ satisfy
(X T X )β̂ = X T Y . (1)

We shall prove that any such β̂ minimises S(β).
Note that S(β) = (Y − Xβ)T (Y − Xβ). Let δ be any p-vector. Then

S(β̂ + δ)− S(β̂)

= (Y − X β̂ − Xδ)T (Y − X β̂ − Xδ)− (Y − X β̂)T (Y − X β̂)

= −2(Xδ)T (Y − X β̂) + (Xδ)T (Xδ)

Simplifying, the first term on the right is −2δT (X T Y − (X T X )β̂) = 0 by
assumption (1), for all δ and Y .
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5. Least squares estimation

The second term on the right is the sum of squares of the elements of Xδ, so
is non-negative, and is 0 if and only if Xδ = 0. Since X is full rank, this is true
if and only if δ = 0.
Thus, S(β̂ + δ)− S(β̂) ≥ 0, with equality if and only if δ = 0. So any β̂
satisfying (1) minimises S(β).
Since X T X is nonsingular, the only solution is β̂ = (X T X )−1X T Y ; this is
therefore the unique least squares estimator.
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5. Least squares estimation

Fitted values and residuals

Having obtained the estimates β̂, the predicted or fitted values of the
response variable are obtained by substitution:

Ŷ = X β̂ = X (X T X )−1X T Y = HY

where H = X (X T X )−1X T is called the hat matrix (it ‘puts the hat’ on Y ).
Similarly, the vector of residuals is the difference

e = Y − Ŷ = (I − X (X T X )−1X T )Y = (I − H)Y

where I = In is the order n identity matrix. Note that both the fitted values and
the residuals are, like the least squares estimates β̂, linear functions of Y .
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5. Least squares estimation

The residual sum of squares is

eT e = S(β̂) = Y T (I − H)T (I − H)Y = Y T (I − H)Y

since, as you can show easily:
H is symmetric: HT = H
H is idempotent: H2 = H, and so:
(I − H)T (I − H) = (I − H)
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5. Least squares estimation

Fitting linear models in R

The R command for fitting a linear model is lm(); the only compulsory
argument is the formula of the model to be fitted – in the model expression
syntax we saw in Section 1. For example,

lm(Cholesterol∼Age)
The variables used in the formula may be either (i) in the current workspace
as ordinary variables, (ii) in a data frame that has been previously attached
using the command, e.g. attach(lipid), or (iii) in a data frame specified
as the 2nd argument of lm(), e.g.

lm(Cholesterol∼Age,lipid)
It produces brief output, the least squares estimates.
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5. Least squares estimation

More comprehensive output is obtained by assigning the output of lm() to a
variable, with a name of your choosing, e.g.

fit1<-lm(Cholesterol∼Age)

and then processing the result.
The output from lm() is a list with 12 named components, e.g.
fit1$residuals; you can see all the names with, e.g.,

names(fit1)

You can look at the values of these components, as usual, by typing the
name, e.g. fit1$coef gives the least squares estimates.
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6. Statistical performance

6. Statistical performance

In this section, we start to make statistical assumptions about our model, but
only about means and variances, not full probability distributions.
Remarkably, this is enough to demonstrate a particular kind of optimality of
least squares estimators, in the form of a famous result known as the
Gauss-Markov theorem.
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6. Statistical performance

Mean and variance assumptions

In our linear model
Y = Xβ + ε,

from now on, we assume that

E(ε) = 0 (or, equivalently, E(Y ) = Xβ): that is, the observations are
unbiased;
var(ϵi) = σ2 for all i (or, equivalently, var(Yi) = σ2 for all i): that is, the
observations have equal variance;
cov(ϵi , ϵj) = 0 for all i ̸= j (or, equivalently, cov(Yi ,Yj) = 0 for all i ̸= j ):
that is, the observations are uncorrelated.

The 2nd and 3rd items are the same as saying that var(ε) = var(Y ) = σ2In.
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6. Statistical performance

Mean and variance of the least squares estimator

We find that
E(β̂) = β and var(β̂) = σ2(X T X )−1

Proof
We will be using the results that

for any random n-vector Y , and any constant m × n matrix A, E(AY ) = AE(Y )
and var(AY ) = Avar(Y )AT .
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6. Statistical performance

Recall that under the full-rank assumption, β̂ = (X T X )−1X T Y . Then

E(β̂) = E((X T X )−1X T Y ) = (X T X )−1X T E(Y )

= (X T X )−1X T Xβ = β

and
var(β̂) = var((X T X )−1X T Y )

= (X T X )−1X T var(Y )[(X T X )−1X T ]T

= (X T X )−1X T [σ2In]X (X T X )−1 = σ2(X T X )−1
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6. Statistical performance

These results allow us to say that least squares estimates are unbiased, and
to write down their standard errors

√
var(β̂j) = σ2[(X T X )−1]jj .

Confidence intervals, etc., based on this will be in the next section.
But even without the further assumptions made there, we can claim a
remarkable optimality for least squares estimation; the variance of the
estimator is the smallest possible (among linear unbiased estimators).

Theorem (Gauss–Markov)

Suppose that E(Y ) = Xβ and var(Y ) = σ2In. Let c be a fixed p-vector. Then
cT β̂ is an unbiased estimator of cTβ, and has variance smaller than any other
estimator that is linear (in Y ) and unbiased.
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6. Statistical performance

Proof

E(cT β̂) = cT E(β̂) = cTβ.

Also, cT β̂ = cT (X T X )−1X T Y is clearly linear in Y . Let λT Y be any other
linear unbiased estimator. Then

cTβ = E(λT Y ) = λT E(Y ) = λT Xβ

holds for all β, that is, cT = λT X .

Peter Green (Bristol) Data Analysis I AIMS Cameroon 63 / 154



6. Statistical performance

So
var(cT β̂) = cTσ2(X T X )−1c = λT Xσ2(X T X )−1(λT X )T

= σ2λT X (X T X )−1X Tλ = σ2λT Hλ

Meanwhile,
var(λT Y ) = λTσ2Inλ = σ2λTλ

so
var(λT Y )− var(cT β̂) = σ2λTλ− σ2λT Hλ

= σ2λT (In − H)λ = σ2λT (In − H)T (In − H)λ ≥ 0

as required.
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6. Statistical performance

Estimating σ2

The least squares principle does not tell itself us how to estimate σ2.
However, we do now have a basis for doing so. Since σ2 = var(Yi) and
E(Yi) = (Xβ)i , we would expect the average of the squares of the residuals
Yi − (X β̂)i to be about σ2.
In fact (from page 19) the residual sum of squares is
eT e = S(β̂) = Y T (In − H)Y , and using the result that

For any random vector Y with E(Y ) = µ and var(Y ) = V , and any constant
matrix A, E(Y T AY ) = µT Aµ+ tr(AV ).

we have
E(eT e) = E(Y T (In − H)Y )

= (Xβ)T (In − H)(Xβ) + tr((In − H)σ2In) = σ2(n − tr(H))

since HX = X (check!).
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6. Statistical performance

Estimating σ2 [2]

But
tr(H) = tr(X (X T X )−1X T )

= tr(X T X (X T X )−1) = tr(Ip) = p,

using the fact that tr(AB) = tr(BA) for all conformable matrices A, B.
Thus,

σ̂2 =
eT e

n − p

(“RSS ÷ df”) is an unbiased estimator of σ2.
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6. Statistical performance

Standardised residuals

Although the errors ϵi are assumed to have equal variance σ2, their estimates,
the residuals ei , do not. In fact,

var(ei) = [var(e)]ii = [var((I − H)Y )]ii

= [σ2(I − H)]ii = σ2(1 − hii)

where hii are the diagonal elements of H.
Therefore we define standardised residuals as
e′

i = ei/(σ̂
√

1 − hii), i = 1,2, . . . ,n. These have (approximately) equal
variances.
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6. Statistical performance

Further results from lm()

A more complete printed summary can be obtained by typing, e.g.,

summary(fit1)

This includes estimates and their standard errors, and some statistics about
residuals and about the fit.
Four diagnostic plots are produced if you type, e.g.,

plot(fit1)

(If you have first typed par(mfrow=c(2,2)) they will be displayed as a
2 × 2 array.)
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6. Statistical performance

Diagnostic plots

The four plots are
1 Fitted values vs. residuals: a scatter plot of (Ŷi , ei)

(a pattern indicates that there is systematic under-fitting: do you need to
fit other explanatory variables?)

2 Normal Q-Q plot: a Q-Q plot of the standardised residuals e′
i

(departures from a straight line suggest that the errors are not normally
distributed)

3 Scale-Location plot: a scatter plot of (Ŷi ,
√
|e′

i |)
(a more sensitive version of the fitted value/residual plot: does the
variance of the errors vary?)

4 Cook’s distance plot: a plot of e′
i
2hii/(p(1 − hii) against i

(Cook’s distance is a measure of how much the overall fit would change if
observation i was deleted)
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6. Statistical performance

Prediction

We often fit a linear model in order to make predictions of the response
variable for various future choices of the explanatory variable(s). The function
predict() is provided for this.
For example,

predict(fit1,data.frame(Age=c(23,27)))

computes the expected values of Cholesterol for Age equal to 23 and 27.
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7. Normal theory assumptions

7. Normal theory assumptions

Now for the first time, we make assumptions about the probability distribution
of our responses. We assume more, and we get more - we can derive
inferential procedures like confidence intervals for parameters, make
probabilistic predictions about future observations, and test hypotheses about
parameter values and about model adequacy.
We will also find an intimate connection between least squares and maximum
likelihood.
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7. Normal theory assumptions

Assumption

In addition to the assumptions of Section 3, we now assume that the {Yi} are
independently normally distributed. That is, Yi ∼ N(xT

i β, σ
2), independently,

or in brief, Y ∼ Nn(Xβ, σ2I).
(Here x i is the i th row of X ; so xT

i β = (Xβ)i .)
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7. Normal theory assumptions

Least squares and maximum likelihood

Since the observations are independent, the likelihood is just the product of
their density functions, so

L = L(β, σ2) =
n∏

i=1

1√
2πσ2

exp

{
− 1

2σ2 (Yi − xT
i β)

2
}

Thus the log-likelihood is

ℓ = ℓ(β, σ2) = −n log
√

2π − n log σ − 1
2σ2

n∑
i=1

(Yi − xT
i β)

2

= −n log
√

2π − n log σ − 1
2σ2 S(β),

where
S(β) = eT e = (Y − Xβ)T (Y − Xβ)

is the usual sum of squares.
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7. Normal theory assumptions

Hence for any σ, maximising the likelihood corresponds exactly to minimising
the sum of squares of the residuals. That is, for β, least squares estimation
and maximum likelihood estimation is the same thing. (Note that the normal
distribution assumption is essential for this conclusion.)
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7. Normal theory assumptions

Since the least squares estimates do not involve σ2, you get the same
estimators on simultaneously maximising over β and σ2.
This connection provides a powerful additional justification for using least
squares estimators.
Differentiating the log-likelihood with respect to σ, and setting to zero, we get

−n
σ
+

S(β)

σ3 = 0

so we immediately obtain the maximum likelihood estimator of σ2 as S(β̂)/n.
Note that this is different from the least squares estimator σ̂2, which has the
divisor (n − p); in practice we always use the latter, the unbiased estimator.
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7. Normal theory assumptions

Joint distribution of β̂ and S(β̂)

Various inferential procedures can be derived from the following result:
If Y ∼ Nn(Xβ, σ2I) then

(a) β̂ ∼ Np(β, σ
2(X T X )−1)

(b) S(β̂)/σ2 ∼ χ2
n−p

(c) β̂ and S(β̂) are independent.
Note that we already knew the mean and variance in (a) and the mean in (b) –
they did not require normality.
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7. Normal theory assumptions

Corollary

For any fixed p-vector c, we have

cT β̂ − cTβ

σ̂
√

cT (X T X )−1c
∼ tn−p
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7. Normal theory assumptions

Proof
From (a), cT β̂ ∼ N(cTβ, σ2cT (X T X )−1c), so

cT β̂ − cTβ

σ
√

cT (X T X )−1c
∼ N(0, 1) (2)

From (b), σ̂2/σ2 = S(β̂)/((n − p)σ2) ∼ χ2
n−p/(n − p), and this is independent

of (2) by (c), so we have our result, by the definition of the t distribution:

“ tν = N(0, 1)/
√

χ2
ν/ν ”

Thus, for example, a 100(1 − α)% confidence interval for cTβ is given by

[cT β̂ − tn−p(α/2)σ̂ω,cT β̂ + tn−p(α/2)σ̂ω]

where ω =
√

cT (X T X )−1c.
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7. Normal theory assumptions

Example 1: confidence interval

A 100(1 − α)% confidence interval for βj is given by

[β̂j − tn−p(α/2)σ̂ω, β̂j + tn−p(α/2)σ̂ω]

where now ω =
√
[(X T X )−1]jj .

You can reject the hypothesis that cTβ = cTβ0 at level α, against a two-sided
alternative, if ∣∣∣∣∣ cT β̂ − cTβ0

σ̂
√

cT (X T X )−1c

∣∣∣∣∣ > tn−p(α/2)

A future observation with explanatory variables x⋆will be Y ⋆ = xT
⋆β + ε⋆; this

has least squares estimate xT
⋆ β̂. The error has variance

σ2xT
⋆ (X T X )−1x⋆ + σ2. A 100(1 − α)% prediction interval for Y ⋆ is

[xT
⋆ β̂ − tn−p(α/2)σ̂ω,xT

⋆ β̂ − tn−p(α/2)σ̂ω]

where this time ω =
√

1 + xT
⋆ (X T X )−1x⋆.
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8. Model choice in linear models

8. Model choice in linear models

We have so far regarded the matrix X , containing numerical explanatory
variables, and 0/1 indicators for factor levels, as fixed and given. In practice,
very often, choice of which explanatory variables and factors to include is at
the discretion of the analyst. As we have seen, it is easy enough in a system
like R to make several different choices, and fit them all. But what criteria
should be used to choose between these models?
We wish to avoid

missing out variables that are important – that would incur bias in
estimation and prediction
including variables that have no effect – that is a waste of expense, and
would lead to inflated estimates of variance of estimates and predictions

The main thing we need is a formal mechanism for determining whether an
individual variable, or group of variables, can be dropped from a linear model,
without an undue effect on the performance of the model in terms of explaing
the variation in Y . This will allow us to make pairwise comparisons between
models.
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8. Model choice in linear models

We already have a method for testing whether a single variable (component of
x) needs to be included – see Example 2 on page 37 . If we set c to be the j th

unit vector, so cTβ = βj , and suppose (β0)j = 0 then we see that you can
reject the hypothesis that βj = 0at level α, against a two-sided alternative, if∣∣∣∣∣ β̂j

σ̂
√
[(X T X )−1]jj

∣∣∣∣∣ > tn−p(α/2)

However, this procedure doesn’t cover the case where the possible exclusion
of several components of x is being considered, since the test for each
component assumes the inclusion of all other components.
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8. Model choice in linear models

Analysis of Variance

This is a general term for procedures that give the generalisation of the t test
that we require.
The basic idea is to decompose the variability, measured by sums of squares,
among components in Y into terms attributable to different components of x .
Tests are based on ratios between these sums of squares.
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8. Model choice in linear models

The basic decomposition is obtained from results on page 19:

HT H = H2 = H and (I − H)T (I − H) = (I − H)2 = I − H

thus:
I = H + (I − H) = HT H + (I − H)T (I − H)

Post- and pre-multiplying by Y :

Y T Y = Ŷ
T

Ŷ + (Y − Ŷ )T (Y − Ŷ )

since Ŷ = HY . In symbols,

SST = SSR + SSE

where SST, SSR and SSE are called the total, regression and residual (or
error) sums of squares, respectively. (This is really Pythagoras’ theorem!)
Because of the special properties of H, each of these terms can be expressed
in many equivalent ways.
What we have done is decompose the variation in Y into a term explained by
the regression, and an unexplained, or residual, term.
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8. Model choice in linear models

If SSR is large relative to SSE, we intuitively conclude that the regression is
doing a good job; now we develop a formal test to assess this.
We know (slides 27/8) that E(SSE) = (n − p)σ2. Meanwhile,

E(SSR) = E(Ŷ
T

Ŷ ) = E(β̂
T

X T X β̂)

= βT X T Xβ + tr[X T Xvar(β̂)]

= βT X T Xβ + tr[X T Xσ2(X T X )−1] = βT X T Xβ + pσ2

So if β = 0, SSR/p is another unbiased estimator of σ2, and

F =
SSR/p

SSE/(n − p)

should be close to 1; if β ̸= 0 it will tend to be larger.
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8. Model choice in linear models

The F test

If we assume, as usual, that Y ∼ Nn(Xβ, σ2I) and that X has full rank p, then
(a) if β = 0, SSR ∼ σ2χ2

p

(b) always, SSE ∼ σ2χ2
n−p

(c) SSE and SSR are independent.
It follows by definition of the F distribution that if β = 0,

F ∼ Fp,n−p

(Actually, regarding (a), in general (β̂ − β)T X T X (β̂ − β) ∼ σ2χ2
p, and

if β ̸= 0 then SSR/σ
2has what we call a non-central χ2 distribution.)
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8. Model choice in linear models

The resulting procedure of calculating the sums of squares and other terms to
perform this F test is usually summarised as an ANOVA table:

Source SS df MS F
Regression on β SSR p SSR/p F
Residual SSE n − p SSE/(n − p)
Total, uncorrected SST n
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8. Model choice in linear models

Correcting for the mean

More often than not, variation in Y is of interest measured from the mean Y of
Y ; SSR and SST are then modified accordingly:

SS⋆
R = SSR − nY

2
SS⋆

T = SST − nY
2
=

n∑
i=1

(Yi − Y )2.

The ANOVA table is modified to:

Source SS df MS F
Regression on β SS⋆

R p − 1 SS⋆
R/(p − 1) F

Residual SSE n − p SSE/(n − p)
Total, corrected SS⋆

T n − 1

where now F ∼ Fp−1,n−p
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8. Model choice in linear models

This F ratio is appropriate for testing the hypothesis that
β2 = β3 = · · · = βp = 0 in the model

Yi =

p∑
j=1

xijβj + ϵi , i = 1,2, . . . , n

where xi1 = 1 for all i , so that β1 is the intercept. We reject that hypothesis at
level α if F > Fp−1,n−p(α).
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8. Model choice in linear models

Significance of subsets of variables

Having fitted, say, x1, x2, . . . , xp, were xq+1, . . . , xp really necessary? (In
practice, we may re-order variables before posing this question. We suppose
that x1 ≡ 1: the model always includes an intercept.)
We answer this question by comparing the fits of two models using a
significance test. The models are:
The Full model: Y = Xβ + ε
The Reduced model: Y = X1β1 + ε

where we have partitioned β =

(
β1
β2

)
and X = [X1|X2] where β1 is q × 1,

β2 is (p − q)× 1, X1 is n × q and X2 is n × (p − q). [NB – be careful, β1 here
is still a vector, the first p components of β, not just the first component.]
The question: are xq+1, . . . , xp really necessary? becomes now: can we
accept the hypothesis H0 : β2 = 0?
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8. Model choice in linear models

We fit both models by least squares, and obtain least squares estimates
β̂Fand β̂1R, and residual sums of squares SSEF = S(β̂F) and SSER = S(β̂1R).
Obviously SSER − SSEF >= 0 – how much larger says how strongly it was
worth including the explanatory variables in X2. This is the basis of the test –
we need to find the distribution of this difference under H0.
Suppose the full model is true, then
(a) if H0 is true, SSER − SSEF ∼ σ2χ2

p−q

(b) always, SSEF ∼ σ2χ2
n−p

(c) SSEF and SSER − SSEF are independent.
Them under H0,

F =
SSER − SSEF

p − q
÷ SSEF

n − p
∼ Fp−q,n−p

and it otherwise tends to be bigger, so we reject H0 at the significance level α
if F > Fp−q,n−p(α).
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8. Model choice in linear models

The main part of the ANOVA table becomes:

Source SS df
Regression on β1 SS⋆

RR q − 1
Due to β2 after β1 SS⋆

RF − SS⋆
RR p − q

Regression on β SS⋆
RF p − 1

Residual SSEF n − p
Total, corrected SS⋆

T n − 1

using the fact that SS⋆
T = SS⋆

RF + SSEF = SS⋆
RR + SSER, so that

SSER − SSEF = SS⋆
RF − SS⋆

RR.
If we need to do the computations by hand, usually it is easiest to compute
SS⋆

T, SS⋆
RR and SS⋆

RF (as sums of squares of the responses, and of the fitted
values under each model, all 3 being corrected by subtracting nY

2
), then the

other sums of squares by subtraction.
That is, SS⋆

T = Y T Y − nY
2

and

SS⋆
RR = Ŷ

T
1 Ŷ 1 − nY

2
SS⋆

RF = Ŷ
T

Ŷ − nY
2

where Ŷ 1 and Ŷare the fitted values from the reduced and full models.
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8. Model choice in linear models

The anova() function in R does all the work for you. Note that it displays the
regression sums of squares for the model with just the 1st term, then the extra
attributable to each additional term, and finally the residual sum of squares.
That is, numbering the models in order of the terms included as 1,2, . . . ,m,
the displayed sums of squares are
SS⋆

R1,SS⋆
R2 − SS⋆

R1, . . . ,SS⋆
Rm − SS⋆

R(m−1),SSEm
The F tests performed by the anova() function thus relate to the successive
inclusion of each term sequentially.
The order in which terms are included is therefore important. The only
exception to this is when the terms in the linear model are orthogonal.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 92 / 154
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Orthogonality
Suppose that X can be partitioned as X = [X1|X2| · · · |Xt ] where X T

i Xj = 0 for
all i ̸= j , each Xi representing a block of pi ≥ 1 columns. Then

X T X =


X T

1 X1 X T
1 X2 · · · X T

1 Xt
X T

2 X1 X T
2 X2 · · · X T

2 Xt
...

...
...

X T
t X1 X T

t X2 · · · X T
t Xt


So

(X T X )−1 =


(X T

1 X1)
−1 0 · · · 0

0 (X T
2 X2)

−1 · · · 0
...

...
...

0 0 · · · (X T
t Xt)

−1


and finally

β̂ = (X T X )−1X T Y =

 (X T
1 X1)

−1X T
1 Y

...
(X T

t Xt)
−1X T

t Y


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8. Model choice in linear models

Thus each block of parameters is estimated just as if the other blocks were
not present in the model.
Furthermore, since var(β̂) = σ2(X T X )−1, estimates in different blocks are
uncorrelated.
Finally, the regression sums of squares relate simply. For a model including
blocks k ∈ T ⊂ {1, 2, . . . , t},

SSR =

(∑
k∈T

Xk β̂k

)T ∑
k∈T

Xk β̂k =
∑
k∈T

β̂
T
k X T

k Xk β̂k

Taking the Full model to be any model including block j , and the Reduced

model to be the same but excluding block j , then SSRF − SSRR = β̂
T
j X T

j Xj β̂j .
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8. Model choice in linear models

The ANOVA table can then be unambiguously constructed as

Source SS df

Regression on β1 β̂
T
1 X T

1 X1β̂1 p1
...

...
...

Regression on βt β̂
T
t X T

t Xt β̂t pt

Residual SSEF n − p
Total, uncorrected SST n
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8. Model choice in linear models

Sketch proof of χ2 and F results

The results quoted in slides 35, 42 and 46, and many other results used for
testing hypotheses in normal linear models, follow from the following
proposition.
Suppose Y ∼ Nn(µ, σ

2I), and that A1,A2, . . . ,Am are real n × n matrices such
that ∑m

r=1 Ar = In
AT

r As = 0 for all r ̸= s
These are the same as

∑m
r=1 Ar y = y and (Ar y)T (Asy) = 0 for all y ∈ Rn. It

follows that A2
r = Ar = AT

r for all r . Then
Ar Y , r = 1, 2, . . . ,m are independent
Ar Y ∼ Nn(Arµ, σ

2Ar )

E(Y T Ar Y ) = σ2pr + µT Arµ, where pr = tr(Ar ) = rank(Ar ).

Y T Ar Y ∼ σ2χ2
pr
⇔ Arµ = 0

This can be proved using 1st year Linear Algebra, but we will omit the proof.
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8. Model choice in linear models

Corollaries

Distribution of β̂ and S(β̂). Let m = 2, A1 = H, A2 = (I − H); we find p1 = p
and p2 = n − p. Also note that (X T X )−1X T A1Y simplifies to β̂, so β̂ is indeed
a function of A1Y . Details left as exercise. This also proves the results on
page 42.
Full vs. Reduced model F test. Let m = 3, A1 = X1(X T

1 X1)
−1X T

1 ,
A2 = X (X T X )−1X T − A1, A3 = I − A1 − A2; we find p1 = q, p2 = p − q and
p3 = n − p. We can simplify: Y T A2Y = SSER − SSEF and Y T A3Y = SSEF.
Details left as exercise.
Correcting for the mean. This just corresponds to taking one of the terms, say
Y T A1Y , to be nY

2
. The corresponding p1 = 1.
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9. Factorial experiments

9. Factorial experiments

This section is concerned with the situation where all of the explanatory
variables are factors. The simplest examples are (e) and (f) of Section 1 (one-
and two-way analysis of variance). Such data very often arises from designed
experiments, rather than observational studies, and the design of these
experiments is the subject of the Experimental design unit.
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9. Factorial experiments

Least squares estimates

As we noted before, the Xmatrix in these problems may not be full-rank, so
we usually find least squares estimates from first principles, not the matrix
formula.
One-way analysis. In double-subscript notation:

Yij = αi + ϵij , j = 1,2, . . . , ni ; i = 1,2, . . . , k

where n =
∑k

i=1 nk . Or we may prefer to express the effects of the factor as
departures from an overall mean:

Yij = µ+ αi + ϵij , j = 1,2, . . . , ni ; i = 1,2, . . . , k

Note that the least squares estimates cannot be unique: we need to impose a
constraint to ensure uniqueness – we will use

∑k
i=1 niαi = 0, but other

possibilities are α1 = 0,
∑

i αi = 0, etc.
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9. Factorial experiments

The sum of squares is

S(µ,α) =
k∑

i=1

ni∑
j=1

(Yij − µ− αi)
2

=
k∑

i=1

ni∑
j=1

(
(Yij − Y i.) + (Y i. − Y .. − αi) + (Y .. − µ)

)2

where dots as subscripts to Y indicate averaging over missing subscripts.
Expanding out the square, we find that because

∑k
i=1 niαi = 0, the

cross-terms cancel, and we get:

S(µ,α) =
k∑

i=1

ni∑
j=1

(Yij − Y i.)
2 +

k∑
i=1

ni∑
j=1

(Y i. − Y .. − αi)
2

+
k∑

i=1

ni∑
j=1

(Y .. − µ)2

Hence the LSE’s are µ̂ = Y .. and α̂i = Y i. − Y ..
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9. Factorial experiments

We also see immediately that the residual sum of squares is
SSE = S(µ̂, α̂) =

∑k
i=1
∑ni

j=1(Yij − Y i.)
2 and the same argument gives the

sum-of-squares decomposition

SST = Y T Y = SSE + SSgroup + nY
2
..

where SSgroup =
∑k

i=1
∑ni

j=1(Y i. − Y ..)
2

The ANOVA table is, in part:

Source SS df
Due to groups SSgroup k − 1
Residual SSE n − k
Total, corrected SS⋆

T n − 1

and the one-way analysis of variance test of the hypothesis that all the αi are
equal to 0 refers

F =
SSgroup/(k − 1)

SSE/(n − k)

to the Fk−1,n−k distribution (justified, again, by the result on slide 51).
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9. Factorial experiments

Row-and-column analysis. We can follow the same line with the
row-plus-column model (example (f))

Yij = µ+ αi + βj + ϵij , i = 1,2, . . . , r ; j = 1,2, . . . , c

but instead we will look at the more general case:
Two-way analysis, with replication. Suppose that we have an equal number ℓ
of repeat or replicate observations in each (i , j) cell of the two-way layout. The
model is as above, but with an additional term:

Yijk = µ+ αi + βj + γij + ϵijk ,

for i = 1, 2, . . . , r ; j = 1, 2, . . . , c; k = 1, 2, . . . , ℓ. Let n = rcℓ. As in the previous
analysis, least squares estimates are not unique as the model stands, and we
need to impose some constraints. We assume

∑
i αi = 0,

∑
j βj = 0, and∑

i γij = 0 for all j and
∑

j γij = 0 for all i .
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9. Factorial experiments

The sum of squares is

S(µ,α,β,γ) =
r∑

i=1

c∑
j=1

ℓ∑
k=1

(Yijk − µ− αi − βj − γij)
2

=
r∑

i=1

c∑
j=1

ℓ∑
k=1

(
(Yijk − Y ij.) + (Y ij. − Y i.. − Y .j. + Y ... − γij)

+(Y i.. − Y ... − αi) + (Y .j. − Y ... − βj) + (Y ... − µ)
)2
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9. Factorial experiments

As in the one-way analysis, the choice of constraints means that all
cross-terms cancel when the square is multiplied out, so that S(µ,α,β,γ) is
the triple sum (over i , j and k ) of (Yijk − Y ij.)

2, (Y ij. − Y i.. − Y .j. + Y ... − γij)
2,

(Y i.. − Y ... − αi)
2, (Y .j. − Y ... − βj)

2, and (Y ... − µ)2.
The least squares estimates are therefore

γ̂ij = Y ij. − Y i.. − Y .j. + Y ... , α̂i = Y i.. − Y ...

β̂j = Y .j. − Y ... and µ̂ = Y ...

The residual sum of squares is
SSE = S(µ̂, α̂, β̂, γ̂) =

∑r
i=1
∑c

j=1
∑ℓ

k=1(Yijk − Y ij.)
2 and the sum-of-squares

decomposition is

SST = Y T Y = SSE + SSrow + SScol + SSinter + nY
2
...

where SSrow = cℓ
∑r

i=1(Y i.. − Y ...)
2, SScol = rℓ

∑c
j=1(Y .j. − Y ...)

2, and
SSinter = ℓ

∑r
i=1
∑c

j=1(Y ij. − Y i.. − Y .j. + Y ...)
2.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 104 / 154



9. Factorial experiments

ANOVA table:

Source SS df
Rows SSrow r − 1
Columns SScol c − 1
Interaction SSinter (r − 1)(c − 1)
Cells SScells rc − 1
Residual SSE rc(ℓ− 1)
Total, corrected SS⋆

T n − 1

where SScells = SSrow + SScol + SSinter of course. By analogy with previous
cases, this gives F tests of hypotheses that there is no interaction (γij ≡ 0), or
no row effects (αi ≡ 0) or no column effects (βj ≡ 0). As usual, the F ratios
and their degrees of freedom are read off from the table; for example the test
for no interaction is based on referring

F =
SSinter/((r − 1)(c − 1))

SSE/(rc(ℓ− 1))
to F(r−1)(c−1),rc(ℓ−1)
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9. Factorial experiments

Verification of assumptions of ANOVA theorem

Here we spell out the checking of assumptions of the ANOVA theorem for one
case – the two-way replicated analysis.
The response vector Y and its sum of squares are decomposed into m = 5
pieces. The matrices A1,A2, . . . ,A5 are defined implicitly by their effect on the
vector Y . For r = 1, 2, . . . ,5, the vector Ar Y is indexed by a triple subscript
(i , j , k), like the response vector itself. The (i , j , k) entries of Ar Y , for
r = 1, 2, . . . , 5 are, respectively: (Yijk − Y ij.), (Y ij. − Y i.. − Y .j. + Y ...),
(Y i.. − Y ...), (Y .j. − Y ...), and (Y ...).
The assumption that

∑
r Ar = I is verified by observing that these add up to

Yijk . The assumption that AT
r As = 0 is verified by taking any two of these 5

terms, summing over all (i , j , k) and checking that the result is 0 (using the
given constraints).
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9. Factorial experiments

For example

r∑
i=1

c∑
j=1

ℓ∑
k=1

(Y ij. − Y i.. − Y .j. + Y ...)(Y i.. − Y ...)

= ℓ

r∑
i=1

(Y i.. − Y ...)
c∑

j=1

(Y ij. − Y i.. − Y .j. + Y ...)

= ℓ

r∑
i=1

(Y i.. − Y ...)(cY i.. − cY i.. − cY ... + cY ...)

= ℓ

r∑
i=1

(Y i.. − Y ...)0 = 0
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9. Factorial experiments

Motivation for the model with interaction
A feature of the model

Yijk = µ+ αi + βj + γij + ϵijk ,

for i = 1, 2, . . . , r ; j = 1, 2, . . . , c; k = 1, 2, . . . , ℓ, or in R:
Y ∼ Row*Column is that it allows us to examine whether row and column
effects are additive or not. For example, consider agricultural trial data where
rows represent sites and columns reprsent varieties of a crop. The additive
model

Yijk = µ+ αi + βj + ϵijk ,

(Yield∼Site+Variety) assumes that the advantage of a good variety
affects the yield of crop at all sites equally. It is perhaps more realistic to
accept the possibility that this is not true, that is to allow the γij term into the
model, which becomes Yield∼Site*Variety. The additive model, without
the interaction term, is however easier to interpret, so testing for the presence
of the interaction (with the F test on slide 58) would usually be the first
inference to be performed. If the hypothesis of no interaction is not rejected,
then we can use the simpler interpretation.
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9. Factorial experiments

Whether or not interaction is detected depends on the scale on which the
measurements are made. Sometimes we consider transforming the
responses using some monotonic function, to achieve additivity. For example,
imagine the data were generated, without noise, from the model

Yijk = αi × βj

(a multiplication table!) Then an additive model would not fit very well. If we
had replicated data with a little noise, and we tested for interaction, we would
probably conclude that it was indeed present. However if we take logs, we get

logYijk = logαi + log βj

and the additive model would fit perfectly.
Note however that taking transformations like this alters the distributional
shape: it is not possible for both Yand logY to be normally distributed.
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9. Factorial experiments

Non-replicated case

When there is only ℓ = 1 observation in each (i , j) cell, we do not need the
subscript kand the model becomes

Yij = µ+ αi + βj + γij + ϵij , i = 1,2, . . . , r ; j = 1,2, . . . , c.

We can immediately see a problem: we will not be able to distinguish the
interaction γij from the noise ϵij . This is an inevitable consequence of having
only one observation per cell.
If you ignored this, then the residual sum of squares SSEon slide 57, namely∑r

i=1
∑c

j=1
∑ℓ

k=1(Yijk − Y ij.)
2 collapses to zero, and its degrees of freedom

rc(ℓ− 1) are also zero. If you then tried to perform the F tests, the
denominator mean square would be 0/0, not defined.
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We have to assume there is nointeraction, and omit that term, giving

Yij = µ+ αi + βj + ϵij , i = 1,2, . . . , r ; j = 1,2, . . . , c.

which is just example (f) again. Correspondingly we do not break down the
sum of squares into so many pieces. With SSrow and SScolumn defined as on
slide 57, but with the thirdsubscript (always “.”) omitted, we put
SSE =

∑r
i=1
∑c

j=1(Y ij − Y i. − Y .j + Y ..)
2, and obtain

SST = Y T Y = SSE + SSrow + SScol + nY
2
..

The ANOVA table simplifies to

Source SS df
Rows SSrow r − 1
Columns SScol c − 1
Residual SSE (r − 1)(c − 1)
Total, corrected SS⋆

T n − 1
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9. Factorial experiments

It is important to remember that we have made an assumption (that row and
column effects are additive), and make some effort to assess if that is
supported by the data, even if the F test is not possible. The diagnostic plots
from Section 3 should reveal any problem – if there is interaction, it will usually
show up in the fitted values/residuals plot.
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Unequally-replicated case

Sometimes, by design or accident (e.g. missing data), our data has an
unequal degree of replication:

Yijk = µ+ αi + βj + γij + ϵijk ,

for i = 1, 2, . . . , r ; j = 1, 2, . . . , c; k = 1, 2, . . . , ℓij , where the ℓij are not all equal.
The total number of observations is n =

∑
i
∑

j ℓij .
With appropriate changes (the ℓij go inside the summations in the definitions
of the sums of squares, and the residual degrees of freedom becomes∑

i
∑

j(ℓij − 1)), the ideas in slides 56 to 58 mostly still apply, except that we
lose orthogonality, e.g.

r∑
i=1

c∑
j=1

ℓij(Y i.. − Y ...)(Y .j. − Y ...)

is not in general zero. The ANOVA then becomes more complicated, and
must be interpreted sequentially, as in the case of general regression.
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9. Factorial experiments

Blocks and treatments

Suppose we want to compare a set of treatments, for example, drug
therapies, fertilisers or varieties in agriculture, industrial process settings, or
teaching methods, and we want to make our comparisons on a broad range of
experimental units, for example, patients of different ages, fields in different
locations, etc. Groups of units that are similar are called blocks, and the
standard arrangement is the randomised block design, where we compare
say rdifferent treatments, applying each to cdifferent blocks of r units, the
units being randomly assigned to the treatments in each block in order to
protect against any accidental bias. Sometimes there are replicates, e.g.
there might be ℓr units in each block, with ℓ assigned to each treatment.
In this situation, a two-way analysis of variance is appropriate, even though
we are typically only interested in differences between treatments, not
between blocks.
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But you might think that a one-way analysis of variance would be sufficient.
Does it matter which you do?
Suppose we have unreplicated data and that the response to treatment i in
block j is Yij .
The F test of the hypothesis of no treatment effect refers

F =
SSrow/(r − 1)

SSE/((r − 1)(c − 1))
to F(r−1),(r−1)(c−1)

according to slide 64. If we did a one-way analysis test of the same
hypothesis we would refer

F [1] =
SSrow/(r − 1)

SS[1]
E /r(c − 1)

to F(r−1),r(c−1)

from slide 55, changing the notation there to match the present situation.
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The numerators in the F ratios are the same, but the denominators are
different. The residual sums of squares are
SSE =

∑r
i=1
∑c

j=1(Y ij − Y i. − Y .j + Y ..)
2 and SS[1]

E =
∑r

i=1
∑c

j=1(Yij − Y i.)
2

from slides 64 and 55 respectively, and the degrees of freedom are
correspondingly different. If there are substantial differences between block
means, then SS[1]

E ≫ SSE. The one-way test is then much less sensitive (less
likely to reject the null hypothesis, even if it is false). The distinction is the
same as that between the paired comparison t-test and the two-sample t-test,
which is what this all reduces to if r = 2.
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Connection with t tests

A point about connections between t and F tests was made in the regression
context in question 1 of sheet 4, but it is more general.

The percentage points in the tables satisfy tν(α/2)2 = F1,ν(α) for all ν, α, or in
R, qt(1-p/2,nu)^2=qf(1-p,1,nu) for all (p,nu), and recalling the
definitions of the t and F distributions in terms of independent normal and χ2

random variables, it is not hard to see why. As for the test statistics, consider
the non-replicated two-way analysis, with r = 2. Let dj = Y1j − Y2j . Then

SSrow = c
∑

i(Y i. − Y ..)
2 can be written as (c/2)d

2
, while

SSE =
∑

i
∑

j(Yij − Y i. − Y .j − Y ..)
2 is the same as (1/2)

∑
j(dj − d)2. So

F =
SSrow/(r − 1)

SSE/((r − 1)(c − 1))
=

cd
2∑

j(dj − d)2/(c − 1)

which is clearly just the square of the paired-comparison t statistic.
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10. Residual analysis

10. Residual analysis

Residual analysis allows us to
1 check the assumptions of the model,
2 check the adequacy of the model,
3 detect outliers.

The residuals are given by
ê = y − X β̂.

Before examining the residuals, it is common to standardise them as follows

ri =
êi

σ̂ei

where σ̂ei is the estimated standard error for êi . Then under the assumptions
of the NLM, the ri should be i.i.d. N(0, 1) random variables. We can check this
using graphical methods.
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10. Residual analysis

Normality assumption

The normality assumption can be checked using a q-q plot. Plot r(i), the i th
rank order residuals against

Φ−1

(
i − 1

2
n

)

the “expected normal deviate”. If the ri are normally distributed, the points
should fall on a straight line at a 45 degree angle.
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10. Residual analysis

Constant variance assumption

Plot ri versus fitted values ŷi and look for systematic changes in spread about
r = 0.
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10. Residual analysis

Model adequacy

We need check if there are any systematic trends in the residuals.
Plot ri versus explanatory variables in the model.
Plot ri versus explanatory variables not included in the model.
Plot ri versus ŷi .
Plot ri versus time (if applicable).
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10. Residual analysis

Outliers

If the residuals have been standardised we expect the majority to fall in the
range (-2, 2). We can check the plot of ri vs. yi for any observations with
“large” ri . Such observations should be checked.
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10. Residual analysis

Variable Selection

Generally aim for a parsimonious model: the simplest model that describes
the data well. Need to balance competing objectives:
Include as many variables as possible

avoid bias in β̂j ’s
include all variables with predictive power

Include as few variables as possible
reduce variance of ŷi ’s
keep model simple
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10. Residual analysis

Leverage

Recall
ŷ = X β̂,

So
ŷ = X (X ′X )−1X ′y = Hy ,

where H is called the hat matrix. It can be shown that residuals ê = y − ŷ
have E(ê) = 0 and Var(ê) = σ2(I − H), or

Var(ϵ̂i) = σ2(1 − Hii) = σ2(1 − hi)

where hi is known as the leverage. An observation with high leverage, hi ,
makes Var(ϵ̂i) small, forcing the fit close to yi .
The average of all n leverages is k/n, so anything with leverage > 2k/n
should be considered more closely.
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10. Residual analysis

Cook’s Distance

Cook’s Distance is a measure of influence. It can be defined as

Di =
(β̂(i) − β̂)′(X ′X )(β̂(i) − β̂)

k σ̂2

where β̂(i) is the estimate of β̂ omitting observation i .
It can be shown that

Di =
ϵ̂2

kσ2

(
hi

(1 − hi)2

)
showing that Di is a function of the residual and the leverage.
Observations with Di > 0.5 may be of concern and observations with Di > 1
should definitely be checked.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 125 / 154



10. Residual analysis

Multicollinearity

Since

β̂ = (X ′X )−1X ′y

Var(β̂) = (X ′X )−1σ2

in general all β̂j are correlated and each β̂j changes on addition/deletion of
variables.
When there are near linear dependencies between variables, the variables
are described as mulitcollinear. So

variances of parameter estimates are high
parameter estimates change drastically on addition/deletion of variables
danger of hidden extrapolation
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10. Residual analysis

Diagnosing Multicollinearity

Can look at pairwise scatterplots, but this only indicates pairwise correlation.
Multicollinearity can be detected by variance inflation factors VIF .
It can be shown that

Var(β̂j) =
1

1 − R2
j

(
σ2∑n

i=1(xji − x j)2

)
or more simply

VIFj =
1

1 − R2
j

where R2
j is the R2 value for the regression of xj on all the other regression

variables.
A VIF > 10 suggest serious multicollinearity and one should be concerned if
VIF > 5.
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11. Variable Selection

11. Variable Selection

Variables can often be selected manually using a sensible model building
strategy, e.g.

starting from a full model then simplifying
including variables on which response is assumed to depend then
considering the addition of further variables

However, when there are many variables this becomes more difficult. One
approach is to use automatic selection procedures to suggest a
model/candidate models.
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11. Variable Selection

Forward Selection

Start with intercept then add variables one at a time.
Suppose the current model has residual SS

SSE(1)

We try adding each of the remaining variables and find the variable xj which
when added gives the model with smallest residual SS

SSE(2)

Under H0 : βj = 0,

F0 =
SSE(1) − SSE(2)

σ̂2 ∼ F1,n−k

where σ̂2 is the residual mean square of the full model with k parameters. If
F0 > F1,n−k ;α, xj is added and the next variable is sought, otherwise we stop.
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11. Variable Selection

Backward Elimination

Start with full model then drop variables one at a time.
Suppose the current model has residual SS

SSE(1)

We try dropping each of the remaining variables and find the variable xj which
when dropped gives the model with smallest residual SS

SSE(2)

Under H0;βj = 0

F0 =
SSE(2) − SSE(1)

σ̂2 ∼ F1,n−k

If F0 < F1,n−k ;α, xj is dropped from the model and the next variable to be
dropped is sought, otherwise stop.
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11. Variable Selection

Stepwise Selection

With forward selection, a variable include early on may become unnecessary
after a latter variable is added.
With backward elimination, a variable removed early on may become
significant after others are deleted.
Stepwise selection is a combination of the two: proceed as with forward
selection, but at each stage test to see if any variables currently in the model
can be dropped.
Stop when all potential deletions would significantly increase the residual sum
of squares and when all potential additions would not significantly decrease
the residual sum of squares.
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11. Variable Selection

Problems with Sequential Procedures

do not guarantee the “best” model will be chosen
all select one model - may be several good models
different procedures may select different models
order in which variables enter/leave does not reflect “importance”
multicollinearity is not diagnosed
multiple significance testing - α not true level of significance
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11. Variable Selection

All subsets regression

If the number of variables is not too large (say < 30) it is possible to consider
all possible regressions and choose “the best” according to some criteria.
R2 and R2

adj are two possible criteria. Another possibility is Mallow’s Cp
statistic

Cp =
SSEp

σ̂2 + 2p − n

where p is the number of parameters in the current model, SSEp is the
corresponding residual SS and σ̂2 is the residual mean square from the full
model.
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11. Variable Selection

If a model with p parameters is adequate there will be no lack of fit or bias, so
we can estimate residual variance as

SSEp

(n − p)
⇒ E(SSEp) = (n − p)σ2 ⇒E(Cp) = p

Therefore select model with fewest parameters that has Cp ≈ p. Usually, but
not always the lowest Cp.
All subsets regression is carried out in R using leaps() from the leaps
package.
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11. Variable Selection

AIC Model Selection Procedures

The Akaike information criterion, AIC, is given by

AIC = −2l(β̂) + 2k

where
l(β̂) the log-likelihood of the candidate model given the data when
evaluated at the maximum likelihood estimate (MLE) β̂;
k is the number of estimated parameters in the candidate model

The AIC in isolation is meaningless. Rather, this value is calculated for every
candidate model and the best model is the candidate model with the smallest
AIC, say AIC∗.
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11. Variable Selection

BIC Model Selection Procedures

The Bayesian information criterion BIC, also referred to as the Schwarz
information criterion is another model selection criterion is

BIC = −2l(β̂) + k log n

It is based on information theory but set within a Bayesian context. The
difference between the BIC and the AIC is the greater penalty imposed for the
number of parameters by the former than the latter.
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11. Variable Selection

BIC Model Selection Procedures

The best model is the one that provides the minimum BIC, say BIC∗

Given M models, ∆BIC = BIC − BIC∗ can be interpreted as evidence against
a candidate model being the best model. The rules of thumb for ∆BIC are:

< 2, it is not worth more than a bare mention.
[2, 6], the evidence against the candidate model is positive.
[6, 10], the evidence against the candidate model is strong.
> 10, the evidence is very strong.

Similarly for ∆AIC = AIC − AIC∗.
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11. Variable Selection

Problems with Automatic Selection Procedures

All subsets regression, like the sequential procedures has the attraction of
selecting the “best” model.
However none of these procedues takes into account other factors, e.g.

subject knowledge
costs
examination of residuals
multicollinearity

All methods of variable selection can overstate significance of variables in the
final model.
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12. Weighted Least Squares

12. Weighted Least Squares

The method of weighted least squares (WLS) can be used when the ordinary
least squares assumption of constant variance in the errors is violated
(heteroscedasticity). The model is

E [Y |X ] = Xβ

with
Cov(Y |X ) = σ2W−1

or
var(Y |X = xi) = var(ei) = σ2/wi , wi > 0

where W is a diagonal positive definite matrix.
Show that β̂w = (X ′WX )−1X ′Wy is unbiased and that

var(β̂w ) = σ2(X ′WX )−1
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12. Weighted Least Squares

Weighted Least Squares: Exercise

Show that the WLS estimator that minimises

SSEw (β) = (Y − Xβ)′W (Y − Xβ)

is

β̂w = (X ′WX )−1X ′Wy .

and prove that β̂w is unbiased and that

var(β̂w ) = σ2(X ′WX )−1

with σ2 = SSEw/d , d = n − k d.f.
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12. Weighted Least Squares

Dependence and heteroscedasticity

Exercise Dependence and heteroscedasticity

Suppose that Y |X is MVN(Xβ, σ2W ) where W is a known positive definite
matrix. Show that the MLE of β is given by the generalised least squares
estimator

β̃ = (X ′W−1X )−1X ′W−1y .
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12. Weighted Least Squares

How to choose the weights

Given that

β̂w = (X ′WX )−1X ′Wy and var(Y |X = xi) = var(ei) = σ2/wi , wi > 0

We can define each wi = 1/σ2
i and since

each weight is inversely proportional to the error variance, it reflects the
information in that observation;
an observation with small error variance has a large weight since it
contains relatively more information than an observation with large error
variance;
weights have to be known (or are usually estimated) up to a
proportionality constant.
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12. Weighted Least Squares

How to choose the weights: example

Parent 0.21 0.2 0.19 0.18 0.17 0.16 0.15
Progeny 0.1726 0.1707 0.1637 0.164 0.1613 0.1617 0.1598

σi 0.01988 0.01938 0.01896 0.02037 0.01654 0.01594 0.01763

Progeny = 0.127 +0.21Parent for simple linear regression with wi = 1.
Progeny = 0.128 +0.20Parent for wi = 1/σ2

i and we get the weighted LS.

The red line is the WLS, the blue line is the LS.
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12. Weighted Least Squares

How to choose the weights

Other cases where the weights might be known:
If the i-th response is an average of ni equally variable observations, then
wi = ni ;
If the i-th response is a total of ni observations, then wi = 1/ni ;
If the variance is proportional to some predictor xi , then wi = 1/xi .
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12. Weighted Least Squares

How to choose the weights

If a residual plot against a predictor exhibits a megaphone shape, then
regress the absolute values of the residuals against that predictor. The
resulting fitted values ŷ∗ of this regression are estimates of σi , so
wi = 1/σ2

i ;
If a residual plot against the fitted values exhibits a megaphone shape,
then regress the absolute values of the residuals against the fitted values.
So the resulting ŷ∗ are estimates of σi .
If a residual plot of the squared residuals against a predictor exhibits an
upward trend, then regress the squared residuals against that predictor.
So the resulting ŷ∗ are estimates of σi .
If a residual plot of the squared residuals against the fitted values exhibits
an upward trend, then regress the squared residuals against the fitted
values. So the resulting ŷ∗ are estimates of σi .

After using one of these methods to estimate wi = 1/σ2
i , then use these

weights in estimating a WLS regression model.
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12. Weighted Least Squares

Box-Cox Transformations

Try stabilising the variance using Box-Cox transformation:

y (λ) =

{
(yλ − 1)/λ λne0
log y λ = 0

Assuming all regression parameters are set at their maximum likelihood
estimates the profile likelihood for λ is

L(λ̂) = const − n
2
logSSE(z(λ))

where z(λ) = y (λ)/ẏ (λ−1), where ẏ represents the geometric mean, and SSE
is the residual sum of squares for the regression of z(λ).
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12. Weighted Least Squares

Problems shown by residuals

Heavy-tailed distribution, variance increases with ŷ
→ transformation (Box-Cox)
Positively skewed distribution
→ counts? log-linear modelling
Variance shows “double bow” shape
→ proportions? logistic regression
Relationship with xj
→ include xj in the model
Increasing variance with xj
→ weighted least squares
Outliers
→ check validity; check influence
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13. Data collection

13. Data collection in finite samples

How can we collect data so that the sample represents the population?

What do we even means by “represents”?

e.g. the proportion of the sample whose value lies in some interval is “like” the
proportion of the population whose value lies in that interval

How can we collect data so that the sample represents the population?

Let us look at some methods of collection:
Collecting Data with a Sample Survey
Collecting Data with an Experiment
Collecting Data with an Observational Study
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13. Data collection

Collecting Data with a Sample Survey

Definition – Simple random sample

A simple random sample of n subjects from a population is one in which each
possible sample of size n has the same probability (chance) of being selected.

In some sense this is the “perfect” way to ensure representativeness -
certainly it is the simplest! But it is not always possible – e.g. how could you
draw a random sample of 18–25 year-old people in Cameroon? On the other
hand, if you make repeated measurements of a constant physical property
with the same instrument, then it is reasonable to assume that you get a
simple random sample.

Peter Green (Bristol) Data Analysis I AIMS Cameroon 149 / 154



13. Data collection

Some other kinds of random sampling

Definition – Stratified random sample

The population is divided into separate groups (“strata”) and then select a
simple random sample from each stratum. This is useful for comparing groups
on some variable when a particular group is relatively small and may not be
adequately represented in a simple random sample

Definition – Clustered random sample

The population is divided into a large number of clusters, such as city blocks,
and a simple random sample of the clusters is collected. This is useful when a
complete listing of the population is not available.
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13. Data collection

Collecting Data with an Experiment

Some studies use a planned experiment to generate data. An experiment
compares subjects on a response variable under different conditions. Those
conditions, which are levels of an explanatory variable, are called treatments.
For instance, the treatments might be different drugs for treating some illness,
compared in a clinical trial.
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13. Data collection

Planning an Experiment

The researcher specifies a plan for how to assign subjects to the treatments,
called the experimental design. Good experimental designs use
randomization to determine which treatment a subject receives. This reduces
bias and allows us to use statistical inference.
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13. Data collection

Collecting Data with an Observational Study

In many application areas, it is not possible to conduct experiments to answer
the questions of interest. We cannot randomly assign subjects to the groups
we want to compare, such as levels of gender or race or educational level or
annual income or usage of guns. Many studies merely observe the outcomes
for available subjects on the variables of interest, without any experimental
control of the subjects. Such studies are called observational studies.
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