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Markov properties and graphs Conditional independence

Conditional independence, probabilistically

X and Y are conditionally independent given Z :

X ⊥⊥ Y | Z

means that if you already know the value of Z , learning that of Y tells you
nothing more about X . Any dependence between X and Y is indirect,
mediated through Z .

In terms of probability distributions, this means

p(x , y |z) = p(x |z)p(y |z)

It proves useful to represent conditional independences graphically.
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Markov properties and graphs Conditional independence graphs

Markov random fields: the local Markov property

?

  
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Markov properties and graphs Conditional independence graphs

Markov random fields = Gibbs distributions
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Markov properties and graphs Conditional independence graphs

Pairwise Markov property

  
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Markov properties and graphs Conditional independence graphs

Global Markov property

  
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Markov properties and graphs Conditional independence graphs

The Hammersley–Clifford theorem

The result that Markov random fields coincided with Gibbs distributions, under
certain conditions, was known as the Hammersley–Clifford theorem (e.g.
Besag, 1974).

Many years later, the theorem was superseded by a more complete
understanding of Markov properties in undirected graphical models: we can
distinguish Global, Local and Pairwise Markov properties, and relate all these
to the Factorisation property of Gibbs distributions; in general

F =⇒ G =⇒ L =⇒ P

Under an additional condition implied by positivity of the joint density, G, L and
P are all equivalent, and if the density is also continuous, F is equivalent too.

Peter Green (UTS/Bristol) Bayes and decomposable models München, der 12.Oktober 2016 7 / 40



Markov properties and graphs Conditional independence graphs

The Hammersley–Clifford theorem

The result that Markov random fields coincided with Gibbs distributions, under
certain conditions, was known as the Hammersley–Clifford theorem (e.g.
Besag, 1974).

Many years later, the theorem was superseded by a more complete
understanding of Markov properties in undirected graphical models: we can
distinguish Global, Local and Pairwise Markov properties, and relate all these
to the Factorisation property of Gibbs distributions; in general

F =⇒ G =⇒ L =⇒ P

Under an additional condition implied by positivity of the joint density, G, L and
P are all equivalent, and if the density is also continuous, F is equivalent too.

Peter Green (UTS/Bristol) Bayes and decomposable models München, der 12.Oktober 2016 7 / 40



Markov properties and graphs Conditional independence graphs

The Hammersley–Clifford theorem

The result that Markov random fields coincided with Gibbs distributions, under
certain conditions, was known as the Hammersley–Clifford theorem (e.g.
Besag, 1974).

Many years later, the theorem was superseded by a more complete
understanding of Markov properties in undirected graphical models: we can
distinguish Global, Local and Pairwise Markov properties, and relate all these
to the Factorisation property of Gibbs distributions; in general

F =⇒ G =⇒ L =⇒ P

Under an additional condition implied by positivity of the joint density, G, L and
P are all equivalent, and if the density is also continuous, F is equivalent too.

Peter Green (UTS/Bristol) Bayes and decomposable models München, der 12.Oktober 2016 7 / 40



Markov properties and graphs Conditional independence graphs

Structural learning

Except in very small problems, the space of graphs to be considered is
typically restricted – e.g. to trees, forests, DAGs or decomposable graphs.

In this talk, we will talk about some aspects of Bayesian methods, and
specifically those that in principle deliver exact or approximate posterior
probabilities (for some or all graphs), not simply optimise a possibly-Bayesian
objective function – and we restrict to decomposable graphs.
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Decomposable graphs

Decomposable graphical models

The case where G is decomposable has been much studied. Decomposability
is a graph theory concept with statistical and computational implications.

Decomposable graphs are also known as triangulated or chordal: a graph is
decomposable if and only if it has no chordless k -cycles for k ≥ 4.
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Decomposable graphs

Decomposability: junction trees

A graph is decomposable if and only if it has a
junction tree representation.

A junction tree is a graph whose vertices are
cliques (maximal complete subgraphs), with the
property that the cliques containing any
prescribed set of vertices forms a connected
sub-tree.

We label the links of a junction tree with the
separators, intersections of the adjacent
cliques. There may be many junction trees for a
given decomposable graph.

Non-uniqueness 7 6 5
of junction tree

2 3 41

267 236 345626 36267 236 345626 36

2

12

12
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Decomposable graphs

A small decomposable graph

Non-uniqueness 7 6 5
of junction tree

2 3 41

267 236 345626 36267 236 345626 36
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Decomposable graphs

A small decomposable graph

7 6 5Non-uniqueness
of junction tree

2 3 41

267 236 345626 36267 236 345626 36

2 2

12 12
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Decomposable graphs

Probabilistic significance of decomposability

If the distribution of a random vector X has a decomposable pairwise
independence graph, then it has a remarkable representation in terms of
(often low-dimensional) marginals:

p(X ) =

∏
C∈C p(XC)∏
S∈S p(XS)

This is the ultimate generalisation of the fact that for an ordinary Markov chain

p(X ) = p(X0)
N∏

i=1

p(Xi |Xi−1) =

∏N
i=1 p(X{i−1,i})∏N−1

i=2 p(Xi−1)

For a general decomposable graph, the same kind of factorisation follows the
branches of the junction tree.
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Decomposable graphs

How restrictive is decomposability?

How many graphs are decomposable?

There are 2(
v
2) graphs altogether on v vertices.

For v ≤ 3 vertices, all are decomposable
for 4 vertices, 61/64
for 6, ≈ 55%
for 8, ≈ 12%.
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How restrictive is decomposability?

How many graphs are decomposable?

There are 2(
v
2) graphs altogether on v vertices.

For v ≤ 3 vertices, all are decomposable
for 4 vertices, 61/64
for 6, ≈ 55%
for 8, ≈ 12%.

The 3 non-decomposable 4-vertex graphs:

Is decomposability a serious constraint?Is decomposability a serious constraint?








22
n

out of

• How many graphs are decomposable?

2out of

Number of
vertices

Proportion of graphs
that are
decomposable

3 all
  4 61/64 – all but:

   6 ~80%
16 45%

• Models using decomposable graphs are 
16 ~45%

‘dense’
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Decomposable graphs

Does that matter?

There is no reason why Nature should be kind enough to give us data from
graphical models that are decomposable. . .

But given any (undirected) graphical model, we can add (‘fill in’) edges to
make the graph decomposable.
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Decomposable graphs

Does that matter?

There is no reason why Nature should be kind enough to give us data from
graphical models that are decomposable. . .

But given any (undirected) graphical model, we can add (‘fill in’) edges to
make the graph decomposable.

not decomposable decomposable

So long as our model for the data, given the graph G, allows arbitrarily small
interactions, we will lose little by assuming decomposability – we will merely
tend to infer (hopefully, slightly) more complicated graphs than necessary.
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Decomposable graphs

Bayesian model determination with
non-decomposable graphs

What happens if the true graph is not decomposable, but you conduct
Bayesian structural learning assuming it is?

Fitch, Jones and Massam (2014, Bayesian Analysis) show that (for the
0-mean Gaussian case, HIW prior on the concentration matrix),
asymptotically,

The posterior will converge to graphical structures that are minimal
triangulations of the true graph.
The marginal log likelihood ratio comparing different minimal
triangulations is stochastically bounded and appears to remain data
dependent regardless of the sample size.
The covariance matrices corresponding to the different minimal
triangulations are essentially equivalent, so model averaging is of minimal
benefit.
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Decomposable graphs

And assuming decomposability has tremendous
advantages....

Computational advantages in fitting the model
Evaluating the fit
Prediction
Sampling data from fitted model
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Decomposable graphs Bayesian model determination in decomposable graphs

Bayesian graphical model determination

Given n i.i.d. samples X = (X1,X2, . . . ,Xn) from a multivariate distribution on
Rv parameterised by the graph G and parameters θ, the usual formulation
takes the form

p(G, θ,X) = π(G)p(θ|G)p(X|G, θ)

and we perform joint structural/quantitative learning by computing the
posterior p(G, θ|X) ∝ p(G, θ,X).

What prior on G? And on θ|G?
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Decomposable graphs Priors on decomposable graphs

Priors on decomposable graphs

Many authors simply take a prior uniform over all valid graphs (makes sense
even if we can’t count them!), or a binomial model conditioned on
decomposability.

Armstrong et al, 2009, advocate specifying prior over the size of the graph
(which is then uniform conditional on size).

Is there a canonical (e.g. conjugate) approach?
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Decomposable graphs Priors on decomposable graphs

Conjugate priors on decomposable graphs

Recall that in any decomposable graphical model the likelihood has the form

p(X |G) =
∏

C∈C p(XC |G)∏
S∈S p(XS|G)

So any prior on the graph G that factorises similarly as a product over cliques
divided by a product over separators will be conjugate.
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Decomposable graphs Priors on decomposable graphs

Byrne & Dawid’s structural Markov property

A graph law π(G) over the set U of undirected decomposable graphs on V is
structurally Markov (Byrne, 2011, Byrne & Dawid, 2015) if for any covering
pair (A,B), we have :

GA ⊥⊥ GB | {G ∈ U(A,B)} [π],

where U(A,B) is the set of decomposable graphs for which (A,B) is a
decomposition.

(A,B) is a covering pair if
A ∪ B = V
(A,B) is a decomposition if A ∩ B
is complete, and separates A \ B
and B \ A.

A

B
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Byrne & Dawid show that a graph law is structurally Markov if and only if has
the form

π(G) ∝
∏

C∈C φC∏
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where {φA : A ⊆ V} are arbitrary positive set-indexed parameters.
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Decomposable graphs Priors on decomposable graphs

A new weak structural Markov property

A graph law π(G) over the set U of undirected decomposable graphs on V is
weakly structurally Markov (WSM) if for any covering pair (A,B), we have :

GA ⊥⊥ GB | {G ∈ U?(A,B)} [π],

where U?(A,B) is the set of decomposable graphs for which (A,B) is a
decomposition, and A ∩ B is a clique in GA.

This places fewer conditional independence conditions on π, so potentially
corresponds to a richer class of graph priors – but we will see that we can still
say something concrete about the form of these laws.
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Decomposable graphs Priors on decomposable graphs

A weak structural Markov property

16 possibilities for GA
(if A ∩ B remains a clique in GA)
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GA ⊥⊥ GB | {G ∈ U?(A,B)} [π],
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Decomposable graphs Priors on decomposable graphs

Clique–separator factorisation graph laws

Theorem 1
A graph law is weakly structurally Markov if and only if has the form

π(G) ∝
∏

C∈C φC∏
S∈S ψS

where {φA : A ⊆ V}, {ψA : A ⊆ V} are arbitrary positive set-indexed
parameters.

This more general form allows valuable extra flexibility in prior specification;
this class of priors has also been studied by Bornn and Caron (2011).
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Decomposable graphs Priors on decomposable graphs

WSM = CSF proof: notation

A decomposable graph is determined by its cliques (maximal complete
subgraphs). We write G(C1,C2,...) for the decomposable graph with cliques
C1,C2, . . . (without ambiguity we can omit singleton cliques from the list).

In particular, G(A) is the graph on V that is complete in A and empty otherwise,
and G(A,B) is the graph on V that is complete on both A and B and empty
otherwise.

A

B
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Decomposable graphs Priors on decomposable graphs

WSM = CSF proof: perfect ordering

An ordering of the cliques of an undirected graph, (C1,C2, . . . ,Cc) is perfect if
for each j = 2,3, . . . , c, there exists h = h(j) such that

Sj = Cj ∩
j−1⋃
i=1

Ci ⊆ Ch

An undirected graph is decomposable if it admits a perfect ordering.

Ch(j) Cj Sj 
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Decomposable graphs Priors on decomposable graphs

WSM = CSF proof: pluperfect ordering

A perfect ordering is called pluperfect if for each j = 2,3, . . . , c, Sj is not a
proper subset of any other separator that was available, that is, could have
been chosen at this point to connect

⋃
i<j Ci to some Ck , k > j .

If there is a perfect ordering, there is a pluperfect one.

Ch(j) Cj Sj 
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If there is a perfect ordering, there is a pluperfect one.

Ch(j) Cj Sj 
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Decomposable graphs Priors on decomposable graphs

WSM = CSF proof: pluperfect ordering

Consider a particular junction tree of G, with junction tree links connecting Cj
to Ch(j) via separator Sj , based on a pluperfect ordering. For each j , let Rj be
any subset of Ch(j) that is a proper superset of Sj .

Ch(j)   Rj Cj Sj 
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Decomposable graphs Priors on decomposable graphs

WSM = CSF – outline

The conditional independence assertions of WSM imply both
For any choice of such {Rj}, we have

π(G) =
∏

j

π(G(Cj ))×
∏
j≥2

π(G(Rj ,Cj ))

π(G(Rj ))π(G(Cj ))

where G(...) is the graph with cliques . . ..
π(G(R1,R2))/π(G(R1))π(G(R2)) depends only on S, for all sets of vertices
R1,R2 that are strict supersets of S, and for which R1 ∪ R2 ⊆ V and
R1 ∩ R2 = S.
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Decomposable graphs Priors on decomposable graphs

WSM = CSF proof

Lemma 1
Let π be the density of a WSM graph law on V, and let G be a decomposable
graph on V.

Consider a particular pluperfect ordering and junction tree of the cliques of G,
and suppose that the links of the junction tree connect Cj to Ch(j) via separator
Sj for each j = 2,3, . . . , J, where J is the number of cliques, and h(j) ≤ j − 1.

For each such j, let Rj be any subset of Ch(j) that is a proper superset of Sj .
Then for any choice of such {Rj}, we have

π(G) =
∏

j

π(G(Cj ))×
∏
j≥2

π(G(Rj ,Cj ))

π(G(Rj ))π(G(Cj ))
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Decomposable graphs Priors on decomposable graphs

WSM = CSF proof

Proof of Lemma 1.

Let B = ∪j−1
i=1Ci and A = (V \ B) ∪ Rj . Then (A,B) is a decomposition and

A ∩ B = Rj . This intersection A ∩ B may or may not be a clique in GB but is
always a clique in GA. For this choice of (A,B), G ∈ U?(A,B), so under WSM,
we have GA ⊥ GB, implying the ‘cross-over identity’

π(G(C1,...,Cj ))π(G(Rj )) = π(G(C1,...,Cj−1))π(G(Rj ,Cj )).

We can therefore write

π(G) = π(G(C1))
∏
j≥2

π(G(C1,...,Cj ))

π(G(C1,...,Cj−1))
= π(G(C1))

∏
j≥2

π(G(Rj ,Cj ))

π(G(Rj ))

=
∏

j

π(G(Cj ))×
∏
j≥2

π(G(Rj ,Cj ))

π(G(Rj ))π(G(Cj ))
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Decomposable graphs Priors on decomposable graphs

WSM = CSF proof

Lemma 2
Let π be the density of a WSM graph law on V, and let G be a decomposable
graph on V, with |V | = n, and let S be any subset of the vertices V with
|S| ≤ n − 2.

Then π(G(R1,R2))/π(G(R1))π(G(R2)) depends only on S, for all sets of vertices
R1,R2 that are strict supersets of S, and for which R1 ∪ R2 ⊆ V and
R1 ∩ R2 = S.
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Decomposable graphs Priors on decomposable graphs

WSM = CSF proof

Proof of Lemma 2.

Apply Lemma 1 to the graph G(R1,R2), which has cliques R1, R2 and separator
S. We have

π(G(R1,R2)) = π(G(R1))π(G(R2))× π(G(R,R2))

π(G(R))π(G(R2))
, that is,

π(G(R1,R2))

π(G(R1))π(G(R2))
=

π(G(R,R2))

π(G(R))π(G(R2))
,

for any R with S ⊂ R ⊆ R1. This means that any vertices may be added to or
removed from R1, or by symmetry to or from R2, without changing the value of
π(G(R1,R2))/{π(G(R1))π(G(R2))}, providing it remains true that R1 ∪ R2 ⊆ V ,
R1 ∩ R2 = S, R1 ⊃ S and R2 ⊃ S.
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Decomposable graphs Priors on decomposable graphs

Example sample from a CSF graph law

φC = exp(4(|C| − 1)) for |C| ≤ 4, else 0; ψS = exp(4|S|)
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Decomposable graphs Priors on decomposable graphs

Example sample from a CSF graph law

φC = exp(4(|C| − 1)) for |C| ≤ 4, else 0;
ψS = exp(4) for|S| = 1, else∞
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Decomposable graphs Priors on decomposable graphs

Example sample from a CSF graph law

φC = exp(4(|C| − 1) + 3#{v ∈ C : mod (v , 10) = 0}) for |C| ≤ 4, else 0;
ψS = exp(4) for|S| = 1, else∞
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Example sample from a CSF graph law
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Decomposable graphs Priors on decomposable graphs

Example sample from a CSF graph law
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Decomposable graphs Priors on decomposable graphs

Example sample from an edge-penalty graph law

φC = ψC = exp(−α|C|(|C| − 1)/2) with α = .75 – i.e. π(G) ∝ exp(−α#edges)
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